Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 20(16): 1981-9, 2001 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-11360182

RESUMO

Protein arrays are described for screening of molecular markers and pathway targets in patient matched human tissue during disease progression. In contrast to previous protein arrays that immobilize the probe, our reverse phase protein array immobilizes the whole repertoire of patient proteins that represent the state of individual tissue cell populations undergoing disease transitions. A high degree of sensitivity, precision and linearity was achieved, making it possible to quantify the phosphorylated status of signal proteins in human tissue cell subpopulations. Using this novel protein microarray we have longitudinally analysed the state of pro-survival checkpoint proteins at the microscopic transition stage from patient matched histologically normal prostate epithelium to prostate intraepithelial neoplasia (PIN) and then to invasive prostate cancer. Cancer progression was associated with increased phosphorylation of Akt (P<0.04), suppression of apoptosis pathways (P<0.03), as well as decreased phosphorylation of ERK (P<0.01). At the transition from histologically normal epithelium to PIN we observed a statistically significant surge in phosphorylated Akt (P<0.03) and a concomitant suppression of downstream apoptosis pathways which proceeds the transition into invasive carcinoma.


Assuntos
Biomarcadores Tumorais/metabolismo , Transformação Celular Neoplásica/patologia , Proteínas de Neoplasias/metabolismo , Próstata/citologia , Neoplasia Prostática Intraepitelial/patologia , Neoplasias da Próstata/patologia , Proteínas Serina-Treonina Quinases , Divisão Celular/fisiologia , Sobrevivência Celular/fisiologia , Transformação Celular Neoplásica/metabolismo , Progressão da Doença , Dissecação , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Humanos , Lasers , Masculino , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Próstata/metabolismo , Neoplasia Prostática Intraepitelial/metabolismo , Neoplasias da Próstata/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Transdução de Sinais/fisiologia
2.
Am J Pathol ; 156(2): 445-52, 2000 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10666374

RESUMO

Coupling laser capture microdissection (LCM) with sensitive quantitative chemiluminescent immunoassays has broad applicability in the field of proteomics applied to normal, diseased, or genetically modified tissue. Quantitation of the number of prostate-specific antigen (PSA) molecules/cell was conducted on human prostate tissue cells procured by LCM from fixed and stained frozen sections. Under direct microscopic visualization, laser shots 30 microm in diameter captured specific cells from the heterogeneous tissue section onto a polymer transfer surface. The cellular macromolecules from the captured cells were solubilized in a microvolume of extraction buffer and directly assayed using an automated (1.5 hour) sandwich chemiluminescent immunoassay. Calibration of the chemiluminescent assay was conducted by developing a standard curve using known concentrations of PSA. After the sensitivity, precision, and linearity of the chemiluminescent assay was verified for known numbers of solubilized microdissected tissue cells, it was then possible to calculate the number of PSA molecules per microdissected tissue cell for case samples. In a study set of 20 cases, using 10 replicate samples of 100 laser shots per sample, the within-run (intraassay) SD was approximately 10% of the mean or less for all cases. In this series the number of PSA molecules per microdissected tissue cell ranged from 2 x 10(4) to 6. 3 x 10(6) in normal epithelium, prostate intraepithelial neoplasia (PIN), and invasive carcinoma. Immunohistochemical staining of human prostate for PSA was compared with the results of the soluble immunoassay for the same prostate tissue section. Independent qualitative scoring of anti-PSA immunohistochemical staining intensity paralleled the LCM quantitative immunoassay for each tissue subpopulation and verified the heterogeneity of PSA content between tissue subpopulations in the same case. Extraction buffers were successfully adapted for both secreted and membrane-bound proteins. This technology has broad applicability for the quantitation of protein molecules in pure populations of tissue cells.


Assuntos
Dissecação/métodos , Imunoensaio/métodos , Terapia a Laser , Microcirurgia , Proteínas/análise , Calibragem , Carcinoma/química , Carcinoma/patologia , Humanos , Imuno-Histoquímica , Masculino , Invasividade Neoplásica , Neoplasias Epiteliais e Glandulares/química , Próstata/química , Antígeno Prostático Específico/análise , Neoplasias da Próstata/química , Neoplasias da Próstata/patologia , Valores de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
3.
Mol Diagn ; 5(4): 301-7, 2000 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11172494

RESUMO

Proteomics will drive biology and medicine beyond genomics, and can have a profound impact on molecular diagnostics. The posttranslational modifications of cellular proteins that govern physiology and become deranged in disease cannot be accurately portrayed by gene expression alone. Consequently, new technology is being developed to discover, and quantitatively monitor, proteomic changes that are associated with disease etiology and progression. In the past, proteomic technologies were restricted to tumor cell lines or homogenized bulk tissue specimens. This source material may not accurately reflect molecular events taking place in the specific cells of the tissue itself. This article describes a completely new class of proteomic-based approaches aimed at the identification and investigation of protein markers in the actual histologically defined cell populations that are immersed in heterogeneous diseased tissue. It is envisioned that these investigations will eventually lead to novel diagnostic, prognostic, or therapeutic markers that can be applied to monitor therapeutic toxicity or efficacy.


Assuntos
Dissecação/métodos , Dissecação/tendências , Genômica , Lasers , Proteoma , DNA Complementar/isolamento & purificação , Dissecação/instrumentação , Humanos , Microscopia/instrumentação , Microscopia/métodos , Microscopia/tendências , Proteínas/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA