Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1147, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326304

RESUMO

If and how proteasomes catalyze not only peptide hydrolysis but also peptide splicing is an open question that has divided the scientific community. The debate has so far been based on immunopeptidomics, in vitro digestions of synthetic polypeptides as well as ex vivo and in vivo experiments, which could only indirectly describe proteasome-catalyzed peptide splicing of full-length proteins. Here we develop a workflow-and cognate software - to analyze proteasome-generated non-spliced and spliced peptides produced from entire proteins and apply it to in vitro digestions of 15 proteins, including well-known intrinsically disordered proteins such as human tau and α-Synuclein. The results confirm that 20S proteasomes produce a sizeable variety of cis-spliced peptides, whereas trans-spliced peptides are a minority. Both peptide hydrolysis and splicing produce peptides with well-defined characteristics, which hint toward an intricate regulation of both catalytic activities. At protein level, both non-spliced and spliced peptides are not randomly localized within protein sequences, but rather concentrated in hotspots of peptide products, in part driven by protein sequence motifs and proteasomal preferences. At sequence level, the different peptide sequence preference of peptide hydrolysis and peptide splicing suggests a competition between the two catalytic activities of 20S proteasomes during protein degradation.


Assuntos
Peptídeos , Complexo de Endopeptidases do Proteassoma , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Hidrólise , Peptídeos/metabolismo , Proteínas/metabolismo
2.
Nat Commun ; 15(1): 411, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195625

RESUMO

Besides vaccines, the development of antiviral drugs targeting SARS-CoV-2 is critical for preventing future COVID outbreaks. The SARS-CoV-2 main protease (Mpro), a cysteine protease with essential functions in viral replication, has been validated as an effective drug target. Here, we show that Mpro is subject to redox regulation in vitro and reversibly switches between the enzymatically active dimer and the functionally dormant monomer through redox modifications of cysteine residues. These include a disulfide-dithiol switch between the catalytic cysteine C145 and cysteine C117, and generation of an allosteric cysteine-lysine-cysteine SONOS bridge that is required for structural stability under oxidative stress conditions, such as those exerted by the innate immune system. We identify homo- and heterobifunctional reagents that mimic the redox switching and inhibit Mpro activity. The discovered redox switches are conserved in main proteases from other coronaviruses, e.g. MERS-CoV and SARS-CoV, indicating their potential as common druggable sites.


Assuntos
COVID-19 , Cisteína , Humanos , SARS-CoV-2 , Desenho de Fármacos , Oxirredução
3.
Subcell Biochem ; 99: 1-33, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36151372

RESUMO

Fatty acid (FA) biosynthesis plays a central role in the metabolism of living cells as building blocks of biological membranes, energy reserves of the cell, and precursors to second messenger molecules. In keeping with its central metabolic role, FA biosynthesis impacts several cellular functions and its misfunction is linked to disease, such as cancer, obesity, and non-alcoholic fatty liver disease. Cellular FA biosynthesis is conducted by fatty acid synthases (FAS). All FAS enzymes catalyze similar biosynthetic reactions, but the functional architectures adopted by these cellular catalysts can differ substantially. This variability in FAS structure amongst various organisms and the essential role played by FA biosynthetic pathways makes this metabolic route a valuable target for the development of antibiotics. Beyond cellular FA biosynthesis, the quest for renewable energy sources has piqued interest in FA biosynthetic pathway engineering to generate biofuels and fatty acid derived chemicals. For these applications, based on FA biosynthetic pathways, to succeed, detailed metabolic, functional and structural insights into FAS are required, along with an intimate knowledge into the regulation of FAS. In this review, we summarize our present knowledge about the functional, structural, and regulatory aspects of FAS.


Assuntos
Biocombustíveis , Ácido Graxo Sintases , Antibacterianos , Vias Biossintéticas , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Ácidos Graxos/metabolismo
4.
Nat Commun ; 8: 15578, 2017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-28541292

RESUMO

The proteasome holoenzyme is the major non-lysosomal protease; its proteolytic activity is essential for cellular homeostasis. Thus, it is an attractive target for the development of chemotherapeutics. While the structural basis of core particle (CP) inhibitors is largely understood, their structural impact on the proteasome holoenzyme remains entirely elusive. Here, we determined the structure of the 26S proteasome with and without the inhibitor Oprozomib. Drug binding modifies the energy landscape of conformational motion in the proteasome regulatory particle (RP). Structurally, the energy barrier created by Oprozomib triggers a long-range allosteric regulation, resulting in the stabilization of a non-productive state. Thereby, the chemical drug-binding signal is converted, propagated and amplified into structural changes over a distance of more than 150 Å from the proteolytic site to the ubiquitin receptor Rpn10. The direct visualization of changes in conformational dynamics upon drug binding allows new ways to screen and develop future allosteric proteasome inhibitors.


Assuntos
Antineoplásicos/metabolismo , Oligopeptídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/metabolismo , Linhagem Celular Tumoral , Microscopia Crioeletrônica , Células HeLa , Humanos , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína
5.
Cell Rep ; 16(12): 3103-3112, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27653676

RESUMO

The formation of macromolecular complexes within the crowded environment of cells often requires aid from assembly chaperones. PRMT5 and SMN complexes mediate this task for the assembly of the common core of pre-mRNA processing small nuclear ribonucleoprotein particles (snRNPs). Core formation is initiated by the PRMT5-complex subunit pICln, which pre-arranges the core proteins into spatial positions occupied in the assembled snRNP. The SMN complex then accepts these pICln-bound proteins and unites them with small nuclear RNA (snRNA). Here, we have analyzed how newly synthesized snRNP proteins are channeled into the assembly pathway to evade mis-assembly. We show that they initially remain bound to the ribosome near the polypeptide exit tunnel and dissociate upon association with pICln. Coincident with its release activity, pICln ensures the formation of cognate heterooligomers and their chaperoned guidance into the assembly pathway. Our study identifies the ribosomal quality control hub as a site where chaperone-mediated assembly of macromolecular complexes can be initiated.


Assuntos
Canais Iônicos/metabolismo , Ribonucleoproteínas Nucleares Pequenas/biossíntese , Ribossomos/metabolismo , Células HEK293 , Humanos , Substâncias Macromoleculares/metabolismo
6.
Science ; 353(6306): 1399-1405, 2016 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-27562955

RESUMO

The activated spliceosome (Bact) is in a catalytically inactive state and is remodeled into a catalytically active machine by the RNA helicase Prp2, but the mechanism is unclear. Here, we describe a 3D electron cryomicroscopy structure of the Saccharomyces cerevisiae Bact complex at 5.8-angstrom resolution. Our model reveals that in Bact, the catalytic U2/U6 RNA-Prp8 ribonucleoprotein core is already established, and the 5' splice site (ss) is oriented for step 1 catalysis but occluded by protein. The first-step nucleophile-the branchsite adenosine-is sequestered within the Hsh155 HEAT domain and is held 50 angstroms away from the 5'ss. Our structure suggests that Prp2 adenosine triphosphatase-mediated remodeling leads to conformational changes in Hsh155's HEAT domain that liberate the first-step reactants for catalysis.


Assuntos
RNA Nuclear Pequeno/química , Ribonucleoproteína Nuclear Pequena U4-U6/química , Ribonucleoproteína Nuclear Pequena U5/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/ultraestrutura , Spliceossomos/ultraestrutura , Adenosina Trifosfatases , Biocatálise , Domínio Catalítico , Microscopia Crioeletrônica , Éxons , Conformação Proteica , RNA Helicases/química , RNA Helicases/genética , Sítios de Splice de RNA , Splicing de RNA , Ribonucleoproteína Nuclear Pequena U4-U6/genética , Ribonucleoproteína Nuclear Pequena U5/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Spliceossomos/química
7.
Science ; 353(6299): 594-8, 2016 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-27493187

RESUMO

The proteasome is a validated target for anticancer therapy, and proteasome inhibition is employed in the clinic for the treatment of tumors and hematological malignancies. Here, we describe crystal structures of the native human 20S proteasome and its complexes with inhibitors, which either are drugs approved for cancer treatment or are in clinical trials. The structure of the native human 20S proteasome was determined at an unprecedented resolution of 1.8 angstroms. Additionally, six inhibitor-proteasome complex structures were elucidated at resolutions between 1.9 and 2.1 angstroms. Collectively, the high-resolution structures provide new insights into the catalytic mechanisms of inhibition and necessitate a revised description of the proteasome active site. Knowledge about inhibition mechanisms provides insights into peptide hydrolysis and can guide strategies for the development of next-generation proteasome-based cancer therapeutics.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Desenho de Fármacos , Complexo de Endopeptidases do Proteassoma/química , Inibidores de Proteassoma/química , Inibidores de Proteassoma/farmacologia , Biocatálise/efeitos dos fármacos , Compostos de Boro/química , Compostos de Boro/farmacologia , Ácidos Borônicos/química , Ácidos Borônicos/farmacologia , Bortezomib/química , Bortezomib/farmacologia , Domínio Catalítico/efeitos dos fármacos , Cristalografia por Raios X , Glicina/análogos & derivados , Glicina/química , Glicina/farmacologia , Humanos , Complexo de Endopeptidases do Proteassoma/ultraestrutura , Conformação Proteica , Treonina/análogos & derivados , Treonina/química , Treonina/farmacologia
8.
Mol Cell ; 49(4): 692-703, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23333303

RESUMO

Small nuclear ribonucleoproteins (snRNPs) represent key constituents of major and minor spliceosomes. snRNPs contain a common core, composed of seven Sm proteins bound to snRNA, which forms in a step-wise and factor-mediated reaction. The assembly chaperone pICln initially mediates the formation of an otherwise unstable pentameric Sm protein unit. This so-called 6S complex docks subsequently onto the SMN complex, which removes pICln and enables the transfer of pre-assembled Sm proteins onto snRNA. X-ray crystallography and electron microscopy was used to investigate the structural basis of snRNP assembly. The 6S complex structure identifies pICln as an Sm protein mimic, which enables the topological organization of the Sm pentamer in a closed ring. A second structure of 6S bound to the SMN complex components SMN and Gemin2 uncovers a plausible mechanism of pICln elimination and Sm protein activation for snRNA binding. Our studies reveal how assembly factors facilitate formation of RNA-protein complexes in vivo.


Assuntos
Proteínas de Drosophila/química , Canais Iônicos/química , Proteínas Centrais de snRNP/química , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Drosophila melanogaster , Humanos , Ligação de Hidrogênio , Camundongos , Microscopia Eletrônica , Modelos Moleculares , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas de Xenopus/química , Xenopus laevis , Proteínas Centrais de snRNP/ultraestrutura
9.
RNA ; 16(8): 1646-59, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20562214

RESUMO

Mammalian cleavage factor I (CF I(m)) is composed of two polypeptides of 25 kDa and either a 59 or 68 kDa subunit (CF I(m)25, CF I(m)59, CF I(m)68). It is part of the cleavage and polyadenylation complex responsible for processing the 3' ends of messenger RNA precursors. To investigate post-translational modifications in factors of the 3' processing complex, we systematically searched for enzymes that modify arginines by the addition of methyl groups. Protein arginine methyltransferases (PRMTs) are such enzymes that transfer methyl groups from S-adenosyl methionine to arginine residues within polypeptide chains resulting in mono- or dimethylated arginines. We found that CF I(m)68 and the nuclear poly(A) binding protein 1 (PABPN1) were methylated by HeLa cell extracts in vitro. By fractionation of these extracts followed by mass spectral analysis, we could demonstrate that the catalytic subunit PRMT5, together with its cofactor WD45, could symmetrically dimethylate CF I(m)68, whereas pICln, the third polypeptide of the complex, was stimulatory. As sites of methylation in CF I(m)68 we could exclusively identify arginines in a GGRGRGRF or "GAR" motif that is conserved in vertebrates. Further in vitro assays revealed a second methyltransferase, PRMT1, which modifies CF I(m)68 by asymmetric dimethylation of the GAR motif and also weakly methylates the C-termini of both CF I(m)59 and CF I(m)68. The results suggest that native-as compared with recombinant-protein substrates may contain additional determinants for methylation by specific PRMTs. A possible involvement of CF I(m) methylation in the context of RNA export is discussed.


Assuntos
Arginina/metabolismo , Precursores de RNA/metabolismo , Animais , Arginina/genética , Fibrinogênio/genética , Fibrinogênio/metabolismo , Expressão Gênica , Mamíferos/genética , Mamíferos/metabolismo , Metilação , Processamento de Proteína Pós-Traducional , Proteína-Arginina N-Metiltransferases , Precursores de RNA/genética
10.
Proc Natl Acad Sci U S A ; 106(32): 13517-22, 2009 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-19628699

RESUMO

Inevitably, viruses depend on host factors for their multiplication. Here, we show that hepatitis C virus (HCV) RNA translation and replication depends on Rck/p54, LSm1, and PatL1, which regulate the fate of cellular mRNAs from translation to degradation in the 5'-3'-deadenylation-dependent mRNA decay pathway. The requirement of these proteins for efficient HCV RNA translation was linked to the 5' and 3' untranslated regions (UTRs) of the viral genome. Furthermore, LSm1-7 complexes specifically interacted with essential cis-acting HCV RNA elements located in the UTRs. These results bridge HCV life cycle requirements and highly conserved host proteins of cellular mRNA decay. The previously described role of these proteins in the replication of 2 other positive-strand RNA viruses, the plant brome mosaic virus and the bacteriophage Qss, pinpoint a weak spot that may be exploited to generate broad-spectrum antiviral drugs.


Assuntos
Genoma Viral/genética , Hepacivirus/genética , Hepacivirus/fisiologia , Biossíntese de Proteínas , Proteínas/metabolismo , RNA Viral/genética , Replicação Viral , Regiões 3' não Traduzidas/metabolismo , Regiões 5' não Traduzidas/genética , Linhagem Celular Tumoral , RNA Helicases DEAD-box/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endorribonucleases/metabolismo , Exorribonucleases/metabolismo , Inativação Gênica , Hepacivirus/patogenicidade , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Conformação de Ácido Nucleico , Ligação Proteica , Proteínas Proto-Oncogênicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/química , Proteínas de Ligação a RNA/metabolismo , Replicon/genética , Transdução de Sinais
11.
Curr Opin Cell Biol ; 21(3): 387-93, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19286363

RESUMO

Mutations that affect pre-mRNA processing are the cause for many genetic diseases. Most such mutations target cis-acting regulatory sequences in a given transcript, thus preventing its proper maturation. Only recently however, mutations in trans-acting factors involved in pre-mRNA processing have likewise been linked to disease. One prominent example is spinal muscular atrophy (SMA), a monogenic, neuromuscular disorder caused by reduced levels of functional survival motor neuron (SMN) protein. This ubiquitous factor is part of a complex that mediates the formation of spliceosomal snRNPs. The detailed biochemical investigation of SMN under normal conditions and in SMA has provided clues how mutations in factors with general functions elicit tissue-specific phenotypes.


Assuntos
Atrofia Muscular Espinal/genética , Ribonucleoproteínas/metabolismo , Humanos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/genética , Proteínas do Complexo SMN/genética , Proteínas do Complexo SMN/metabolismo , Proteínas Centrais de snRNP/genética , Proteínas Centrais de snRNP/metabolismo
12.
Hum Mol Genet ; 18(7): 1288-300, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19158098

RESUMO

Distal spinal muscular atrophy type 1 (DSMA1) is an autosomal recessive disease that is clinically characterized by distal limb weakness and respiratory distress. In this disease, the degeneration of alpha-motoneurons is caused by mutations in the immunoglobulin mu-binding protein 2 (IGHMBP2). This protein has been implicated in DNA replication, pre-mRNA splicing and transcription, but its precise function in all these processes has remained elusive. We have purified catalytically active recombinant IGHMBP2, which has enabled us to assess its enzymatic properties and to identify its cellular targets. Our data reveal that IGHMBP2 is an ATP-dependent 5' --> 3' helicase, which unwinds RNA and DNA duplices in vitro. Importantly, this helicase localizes predominantly to the cytoplasm of neuronal and non-neuronal cells and associates with ribosomes. DSMA1-causing amino acid substitutions in IGHMBP2 do not affect ribosome binding yet severely impair ATPase and helicase activity. We propose that IGHMBP2 is functionally linked to translation, and that mutations in its helicase domain interfere with this function in DSMA1 patients.


Assuntos
DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Atrofia Muscular Espinal/enzimologia , Ribossomos/enzimologia , Fatores de Transcrição/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Extratos Celulares , Linhagem Celular Tumoral , DNA Helicases/química , Proteínas de Ligação a DNA/química , Ativação Enzimática , Humanos , Camundongos , Proteínas Mutantes/metabolismo , Ligação Proteica , Ribonucleoproteínas/metabolismo , Fatores de Transcrição/química
13.
Anal Biochem ; 368(2): 178-84, 2007 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-17597574

RESUMO

Nearly all processes in cells are regulated by the coordinated interplay between reversible protein phosphorylation and dephosphorylation. Therefore, it is a great challenge to identify all phosphorylation substrates of a single protein kinase to understand its integration into intracellular signaling networks. In this work, we developed an assay that holds promise as being useful for the identification of phosphorylation substrates of a given protein kinase of interest. The method relies on irreversible inhibition of endogenous kinase activities with the ATP analogue 5'-fluorosulfonylbenzoyladenosine (5'FSBA). 5'FSBA-treated cell extracts are then combined with a purified activated kinase to allow phosphorylation of putative substrate proteins, followed by a two-step purification protocol and identification by fingerprint mass spectrometry. Specifically, we applied this method to identify new phosphorylation substrates of the Drosophila p21-activated kinase (PAK) protein Mbt. Among candidate proteins identified by mass spectrometry, the dynactin complex subunit dynamitin was verified as a bona fide Mbt phosphorylation substrate and interaction partner, suggesting an involvement of this PAK protein in the regulation of dynactin-dependent cellular processes.


Assuntos
Adenosina/análogos & derivados , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Quinases Ativadas por p21/metabolismo , Adenosina/química , Animais , Células Cultivadas , Clonagem Molecular , Proteínas de Drosophila/química , Complexo Dinactina , Imunoprecipitação , Espectrometria de Massas , Proteínas Associadas aos Microtúbulos/metabolismo , Mapeamento de Peptídeos , Fosforilação , Proteínas Quinases/metabolismo , Quinases Ativadas por p21/química
14.
Hum Mol Genet ; 14(20): 3099-111, 2005 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-16159890

RESUMO

Spliceosomal Uridine-rich small ribonucleo protein (U snRNP) assembly is an active process mediated by the macromolecular survival motor neuron (SMN) complex. This complex contains the SMN protein and six additional proteins, named Gemin2-7, according to their localization to nuclear structures termed gems. Here, we provide biochemical evidence for the existence of another, yet atypical, SMN complex component, termed unr-interacting protein (unrip). This abundant factor has been previously shown to form a complex with unr, a protein implicated in cap-independent translation of cellular and viral mRNA. We show that unrip is integrated into a complex with unr or with the SMN complex in vivo in a mutually exclusive manner. In the latter case, unrip is recruited to the active SMN complex via a stable interaction with Gemin7. However, unlike SMN and Gemins, unrip localizes predominantly to the cytoplasm and is absent from gems/Cajal bodies. Interestingly, RNAi-induced reduction of unrip protein levels leads to enhanced accumulation of SMN in the nucleus as evident by the increased formation of nuclear gems/Cajal bodies. Our data identify unrip as the first component of the U snRNP assembly machinery that associates with the SMN complex in a compartment-specific way. We speculate that unrip plays a crucial role in the intracellular distribution of the SMN complex.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Citoplasma/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Biossíntese de Proteínas , Proteínas de Ligação a RNA/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Corpos Enovelados , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Humanos , Complexos Multiproteicos/química , Proteínas de Neoplasias/química , Ligação Proteica , Transporte Proteico , Capuzes de RNA/fisiologia , Interferência de RNA , Proteínas Recombinantes de Fusão , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteínas do Complexo SMN
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA