Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(35): e2302992, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37904721

RESUMO

Lentiviral vectors (LV) have become the dominant tool for stable gene transfer into lymphocytes including chimeric antigen receptor (CAR) gene delivery to T cells, a major breakthrough in cancer therapy. Yet, room for improvement remains, especially for the latest LV generations delivering genes selectively into T cell subtypes, a key requirement for in vivo CAR T cell generation. Toward improving gene transfer rates with these vectors, whole transcriptome analyses on human T lymphocytes are conducted after exposure to CAR-encoding conventional vectors (VSV-LV) and vectors targeted to CD8+ (CD8-LV) or CD4+ T cells (CD4-LV). Genes related to quiescence and antiviral restriction are found to be upregulated in CAR-negative cells exposed to all types of LVs. Down-modulation of various antiviral restriction factors, including the interferon-induced transmembrane proteins (IFITMs) is achieved with rapamycin as verified by mass spectrometry (LC-MS). Strikingly, rapamycin enhances transduction by up to 7-fold for CD8-LV and CD4-LV without compromising CAR T cell activities but does not improve VSV-LV. When administered to humanized mice, CD8-LV results in higher rates of green fluorescent protein (GFP) gene delivery. Also in vivo CAR T cell generation is improved in kinetics and tumor control, however to a moderate extent, leaving room for improvement by optimizing the rapamycin administration schedule. The data favor multi-omics approaches for improvements in gene delivery.


Assuntos
Receptores de Antígenos Quiméricos , Humanos , Camundongos , Animais , Receptores de Antígenos Quiméricos/genética , Lentivirus/genética , Vetores Genéticos/genética , Técnicas de Transferência de Genes , Antivirais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA