RESUMO
Several methoxybenzo[h]quinoline-3-carbonitrile analogs were designed and synthesized in a repositioning approach to developing compounds with anti-prostate cancer and anti-Chagas disease properties. The compounds were synthesized through a sequential multicomponent reaction of aromatic aldehydes, malononitrile, and 1-tetralone in the presence of ammonium acetate and acetic acid (catalytic). The effect of the one-pot method on the generation of the target product has been studied. The compounds were in vitro screened against bloodstream trypomastigotes of T. cruzi (NINOA and INC-5 strains) and were most effective at showing a better activity profile than nifurtimox and benznidazole (reference drugs). A study in silico on absorption, distribution, metabolism, excretion, and toxicity (ADME/Tox) profiling to help describe the molecular properties related to the pharmacokinetic aspects in the human body of these compounds was reported. In addition, X-ray data for the compound 2-Amino-5,6-dihydro-4-(3-hydroxy-4-methoxy-phenyl)-8-methoxybenzo[h]quinoline-3-carbonitrile 6 was being reported. Spectral (IR, NMR, and elemental analyses) data on all final compounds were consistent with the proposed structures.
Assuntos
Doença de Chagas , Simulação por Computador , Quinolinas , Tripanossomicidas , Trypanosoma cruzi/crescimento & desenvolvimento , Desenho de Fármacos , Humanos , Quinolinas/síntese química , Quinolinas/química , Quinolinas/farmacologia , Relação Estrutura-Atividade , Tripanossomicidas/síntese química , Tripanossomicidas/química , Tripanossomicidas/farmacologiaRESUMO
This study describes the direct synthesis of 2-amino-4-(phenylsubstituted)-5H-indeno[1,2-b]pyridine-3-carbonitrile derivatives 5-21, through sequential multicomponent reaction of aromatic aldehydes, malononitrile, and 1-indanone in the presence of ammonium acetate and acetic acid (catalytic). The biological study showed that compound 10 significantly impeded proliferation of the cell lines PC-3, LNCaP, and MatLyLu. The antimetastatic effects of compound 10 could be related with inhibition of MMP9 in the PC-3 and LNCaP human cell lines. On the basis of a study of the structure-activity relationship of these compounds, we propose that the presence of two methoxy groups at positions 6 and 7 of the indeno nucleus and a 4-hydroxy-3-methoxy phenyl substitution pattern at position 4 of the pyridine ring is decisive for these types of molecules to exert very good antiproliferative and antimetastatic activities.