Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
mBio ; 2(4)2011.
Artigo em Inglês | MEDLINE | ID: mdl-21846828

RESUMO

UNLABELLED: Highly pathogenic avian influenza A (HPAI) viruses of the H5N1 subtype have recently emerged from avian zoonotic reservoirs to cause fatal human disease. Adaptation of HPAI virus RNA-dependent RNA polymerase (PB1, PB2, and PA proteins) and nucleoprotein (NP) to interactions with mammalian host proteins is thought to contribute to the efficiency of viral RNA synthesis and to disease severity. While proteomics experiments have identified a number of human proteins that associate with H1N1 polymerases and/or viral ribonucleoprotein (vRNP), how these host interactions might regulate influenza virus polymerase functions and host adaptation has been largely unexplored. We took a functional genomics (RNA interference [RNAi]) approach to assess the roles of a network of human proteins interacting with influenza virus polymerase proteins in viral polymerase activity from prototype H1N1 and H5N1 viruses. A majority (18 of 31) of the cellular proteins tested, including RNA-binding (DDX17, DDX5, NPM1, and hnRNPM), stress (PARP1, DDB1, and Ku70/86), and intracellular transport proteins, were required for efficient activity of both H1N1 and H5N1 polymerases. NXP2 and NF90 antagonized both polymerases, and six more RNA-associated proteins exhibited strain-specific phenotypes. Remarkably, 12 proteins differentially regulated H5N1 polymerase according to PB2 genotype at mammalian-adaptive residue 627. Among these, DEAD box RNA helicase DDX17/p72 facilitated efficient human-adapted (627K) H5N1 virus mRNA and viral RNA (vRNA) synthesis in human cells. Likewise, the chicken DDX17 homologue was required for efficient avian (627E) H5N1 infection in chicken DF-1 fibroblasts, suggesting that this conserved virus-host interaction contributes to PB2-dependent host species specificity of influenza virus and ultimately to the outcome of human HPAI infections. IMPORTANCE: Highly pathogenic avian influenza A (HPAI) viruses have recently emerged from wild and domestic birds to cause fatal human disease. In human patients, it is thought that adaptation of the viral polymerase, a complex of viral proteins responsible for viral gene expression and RNA genome replication, to interactions with mammalian rather than avian host proteins contributes to disease severity. In this study, we used computational analysis and RNA interference (RNAi) experiments to identify a biological network of human proteins that regulates an H5N1 HPAI virus polymerase, in comparison to a mammalian H1N1 virus. Of 31 proteins tested, 18 (58%) were required for polymerase function in both HPAI and H1N1 viruses. Remarkably, we also found proteins such as DDX17 that governed the HPAI virus polymerase's adaptation to human cells. These virus-host interactions may thus control pathogenicity of HPAI virus in humans and are promising therapeutic targets for antiviral drugs in severe influenza infections.


Assuntos
Interações Hospedeiro-Patógeno , Vírus da Influenza A Subtipo H1N1/enzimologia , Virus da Influenza A Subtipo H5N1/enzimologia , Proteínas de Ligação a RNA/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Proteínas do Core Viral/metabolismo , Proteínas Virais/metabolismo , Linhagem Celular , Humanos , Vírus da Influenza A Subtipo H1N1/patogenicidade , Virus da Influenza A Subtipo H5N1/patogenicidade , Proteínas do Nucleocapsídeo , Nucleofosmina , Ligação Proteica
2.
J Virol ; 85(10): 5228-31, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21411538

RESUMO

The influenza A virus genome consists of eight RNA segments that associate with the viral polymerase proteins (PB1, PB2, and PA) and nucleoprotein (NP) to form ribonucleoprotein complexes (RNPs). The viral NS1 protein was previously shown to associate with these complexes, although it was not clear which RNP component mediated the interaction. Using individual TAP (tandem affinity purification)-tagged PB1, PB2, PA, and NP, we demonstrated that the NS1 protein interacts specifically with NP and not the polymerase subunits. The region of NS1 that binds NP was mapped to the RNA-binding domain.


Assuntos
Mapeamento de Interação de Proteínas , Proteínas de Ligação a RNA/metabolismo , Proteínas do Core Viral/metabolismo , Proteínas não Estruturais Virais/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Linhagem Celular , Humanos , Dados de Sequência Molecular , Proteínas do Nucleocapsídeo , Proteínas não Estruturais Virais/genética
3.
J Virol ; 81(14): 7801-4, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17494067

RESUMO

The assembly of the polymerase complex of influenza A virus from the three viral polymerase subunits PB1, PB2, and PA is required for viral RNA synthesis. We show that peptides which specifically bind to the protein-protein interaction domains in the subunits responsible for complex formation interfere with polymerase complex assembly and inhibit viral replication. Specifically, we provide evidence that a 25-amino-acid peptide corresponding to the PA-binding domain of PB1 blocks the polymerase activity of influenza A virus and inhibits viral spread. Targeting polymerase subunit interactions therefore provides a novel strategy to develop antiviral compounds against influenza A virus or other viruses.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Vírus da Influenza A/enzimologia , Peptídeos/metabolismo , Sequência de Aminoácidos , RNA Polimerases Dirigidas por DNA/química , Vírus da Influenza A/fisiologia , Dados de Sequência Molecular , Peptídeos/química , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA