Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 126(51): 10797-10812, 2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-36534755

RESUMO

Amyloid fibrils are abnormal protein aggregates associated with several amyloidoses and neurodegenerative diseases. Prefibrillar intermediates, which emerge before amyloid fibril formation, play an important role in structure formation. Therefore, to prevent fibril formation, the mechanisms underpinning the structural development of prefibrillar intermediates must be elucidated. An insulin-derived peptide, the insulin B chain, is known for its stable accumulation of prefibrillar intermediates. In this study, the structural development of B chain prefibrillar intermediates and their inhibition by fibrinogen (Fg) were monitored by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) combined with solid-state nuclear magnetic resonance spectroscopy (NMR) and size exclusion chromatography. TEM images obtained in a time-lapse manner demonstrated that prefibrillar intermediates were wavy rod-like structures emerging from initial non-rod-like aggregates, and their bundling was responsible for protofilament formation. Time-resolved SAXS revealed that the prefibrillar intermediates became thicker and longer as a function of time. Solid-state NMR measurement suggested a ß-sheet formation around Ala14 residue was crucial for the structural conversion from prefibrillar intermediates to amyloid fibril. These observations suggested that prefibrillar intermediates serve as reaction fields for amyloid nucleation and its structural propagation. Time-resolved SAXS also demonstrated that Fg prevented elongation of the prefibrillar intermediates by forming specific complexes together, which implied that regulation of the length of prefibrillar intermediates upon Fg binding was the factor suppressing the prefibrillar intermediate elongation. The fibril formation mechanism and the inhibition strategy found in this study will be helpful in seeking appropriate methods against amyloid-related diseases.


Assuntos
Amiloide , Fibrinogênio , Amiloide/química , Insulina/química , Espalhamento a Baixo Ângulo , Difração de Raios X , Proteínas Amiloidogênicas
2.
Molecules ; 27(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35807211

RESUMO

Amyloid fibrils have been an important subject as they are involved in the development of many amyloidoses and neurodegenerative diseases. The formation of amyloid fibrils is typically initiated by nucleation, whereas its exact mechanisms are largely unknown. With this situation, we have previously identified prefibrillar aggregates in the formation of insulin B chain amyloid fibrils, which have provided an insight into the mechanisms of protein assembly involved in nucleation. Here, we have investigated the formation of insulin B chain amyloid fibrils under different pH conditions to better understand amyloid nucleation mediated by prefibrillar aggregates. The B chain showed strong propensity to form amyloid fibrils over a wide pH range, and prefibrillar aggregates were formed under all examined conditions. In particular, different structures of amyloid fibrils were found at pH 5.2 and pH 8.7, making it possible to compare different pathways. Detailed investigations at pH 5.2 in comparison with those at pH 8.7 have suggested that the evolution of protofibril-like aggregates is a common mechanism. In addition, different processes of evolution of the prefibrillar aggregates have also been identified, suggesting that the nucleation processes diversify depending on the polymorphism of amyloid fibrils.


Assuntos
Amiloide , Insulina , Amiloide/química , Proteínas Amiloidogênicas/metabolismo , Insulina/metabolismo , Ligação Proteica
3.
Biophys Physicobiol ; 19: 1-10, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35797403

RESUMO

It is crucial to understand the mechanism of amyloid fibril formation for the development of the therapeutic ways against amyloidoses and neurodegenerative diseases. Prefibrillar intermediates, which emerge prior to the fibril formation, seem to play a key role to the occurrence of nuclei of amyloid fibrils. We have focused on an insulin-derived peptide, B chain, to precisely clarify the mechanism of the fibril formation via prefibrillar intermediates. Various kinds of methods such as circular dichroism spectroscopy, dynamic light scattering, small-angle X-ray scattering, and atomic force microscopy were employed to track the structural changes in prefibrillar intermediates. The prefibrillar intermediates possessing rod-shaped structures elongated as a function of time, which led to fibril formation. We have also found that a blood clotting protein, fibrinogen, inhibits the amyloid fibril formation of B chain. This was caused by the stabilization of prefibrillar intermediates and thus the suppression of their elongation by fibrinogen. These findings have not only shed light on detailed mechanisms about how prefibrillar intermediates convert to the amyloid fibril, but also demonstrated that inhibiting the structural development of prefibrillar intermediates is an effective strategy to develop therapeutic ways against amyloid-related diseases. This review article is an extended version of the Japanese article, Observing Development of Amyloid Prefibrillar Intermediates and their Interaction with Chaperones for Inhibiting the Fibril Formation, published in SEIBUTSU BUTSURI Vol. 61, p. 236-239 (2021).

4.
Int J Mol Sci ; 22(9)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919421

RESUMO

Amyloid fibrils are supramolecular protein assemblies represented by a cross-ß structure and fibrous morphology, whose structural architecture has been previously investigated. While amyloid fibrils are basically a main-chain-dominated structure consisting of a backbone of hydrogen bonds, side-chain interactions also play an important role in determining their detailed structures and physicochemical properties. In amyloid fibrils comprising short peptide segments, a steric zipper where a pair of ß-sheets with side chains interdigitate tightly is found as a fundamental motif. In amyloid fibrils comprising longer polypeptides, each polypeptide chain folds into a planar structure composed of several ß-strands linked by turns or loops, and the steric zippers are formed locally to stabilize the structure. Multiple segments capable of forming steric zippers are contained within a single protein molecule in many cases, and polymorphism appears as a result of the diverse regions and counterparts of the steric zippers. Furthermore, the ß-solenoid structure, where the polypeptide chain folds in a solenoid shape with side chains packed inside, is recognized as another important amyloid motif. While side-chain interactions are primarily achieved by non-polar residues in disease-related amyloid fibrils, the participation of hydrophilic and charged residues is prominent in functional amyloids, which often leads to spatiotemporally controlled fibrillation, high reversibility, and the formation of labile amyloids with kinked backbone topology. Achieving precise control of the side-chain interactions within amyloid structures will open up a new horizon for designing useful amyloid-based nanomaterials.


Assuntos
Amiloide/química , Amiloide/metabolismo , Animais , Humanos , Modelos Moleculares , Conformação Proteica , Estabilidade Proteica
5.
Commun Biol ; 4(1): 120, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33500517

RESUMO

The thermodynamic hypothesis of protein folding, known as the "Anfinsen's dogma" states that the native structure of a protein represents a free energy minimum determined by the amino acid sequence. However, inconsistent with the Anfinsen's dogma, globular proteins can misfold to form amyloid fibrils, which are ordered aggregates associated with diseases such as Alzheimer's and Parkinson's diseases. Here, we present a general concept for the link between folding and misfolding. We tested the accessibility of the amyloid state for various proteins upon heating and agitation. Many of them showed Anfinsen-like reversible unfolding upon heating, but formed amyloid fibrils upon agitation at high temperatures. We show that folding and amyloid formation are separated by the supersaturation barrier of a protein. Its breakdown is required to shift the protein to the amyloid pathway. Thus, the breakdown of supersaturation links the Anfinsen's intramolecular folding universe and the intermolecular misfolding universe.


Assuntos
Amiloide/química , Amiloide/metabolismo , Dobramento de Proteína , Sequência de Aminoácidos/fisiologia , Amiloidose/etiologia , Amiloidose/metabolismo , Precipitação Química , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Humanos , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Concentração Osmolar , Agregação Patológica de Proteínas/etiologia , Agregação Patológica de Proteínas/metabolismo , Conformação Proteica , Multimerização Proteica/fisiologia , Termodinâmica , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Proteínas tau/química , Proteínas tau/metabolismo
6.
Biomolecules ; 11(1)2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33451048

RESUMO

Among seven homologs of cytochrome b561 in a model organism C. elegans, Cecytb-2 was confirmed to be expressed in digestive organs and was considered as a homolog of human Dcytb functioning as a ferric reductase. Cecytb-2 protein was expressed in Pichia pastoris cells, purified, and reconstituted into a phospholipid bilayer nanodisc. The reconstituted Cecytb-2 in nanodisc environments was extremely stable and more reducible with ascorbate than in a detergent-micelle state. We confirmed the ferric reductase activity of Cecytb-2 by analyzing the oxidation of ferrous heme upon addition of ferric substrate under anaerobic conditions, where clear and saturable dependencies on the substrate concentrations following the Michaelis-Menten equation were observed. Further, we confirmed that the ferric substrate was converted to a ferrous state by using a nitroso-PSAP assay. Importantly, we observed that the ferric reductase activity of Cecytb-2 became enhanced in the phospholipid bilayer nanodisc.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , FMN Redutase/metabolismo , L-Lactato Desidrogenase (Citocromo)/metabolismo , Bicamadas Lipídicas/metabolismo , Nanopartículas/química , Fosfolipídeos/metabolismo , Animais , Proteínas de Caenorhabditis elegans/isolamento & purificação , Detergentes/farmacologia , Difusão Dinâmica da Luz , Glucosídeos/farmacologia , L-Lactato Desidrogenase (Citocromo)/isolamento & purificação , Micelas , Tamanho da Partícula , Bases de Schiff
7.
Biophys J ; 120(2): 284-295, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33340544

RESUMO

Amyloid fibrils are aberrant protein aggregates associated with various amyloidoses and neurodegenerative diseases. It is recently indicated that structural diversity of amyloid fibrils often results in different pathological phenotypes, including cytotoxicity and infectivity. The diverse structures are predicted to propagate by seed-dependent growth, which is one of the characteristic properties of amyloid fibrils. However, much remains unknown regarding how exactly the amyloid structures are inherited to subsequent generations by seeding reaction. Here, we investigated the behaviors of self- and cross-seeding of amyloid fibrils of human and bovine insulin in terms of thioflavin T fluorescence, morphology, secondary structure, and iodine staining. Insulin amyloid fibrils exhibited different structures, depending on species, each of which replicated in self-seeding. In contrast, gradual structural changes were observed in cross-seeding, and a new type of amyloid structure with distinct morphology and cytotoxicity was formed when human insulin was seeded with bovine insulin seeds. Remarkably, iodine staining tracked changes in amyloid structure sensitively, and singular value decomposition analysis of the ultraviolet-visible absorption spectra of the fibril-bound iodine has revealed the presence of one or more intermediate metastable states during the structural changes. From these findings, we propose a propagation scheme with multistep structural changes in cross-seeding between two heterologous proteins, which is accounted for as a consequence of the rugged energy landscape of amyloid formation.


Assuntos
Amiloide , Amiloidose , Animais , Bovinos , Humanos , Insulina , Estrutura Secundária de Proteína
8.
Biochemistry ; 58(24): 2769-2781, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31135143

RESUMO

Abnormal protein aggregation tends to result in the formation of ß-sheet rich amyloid fibrils, which are related to various kinds of amyloidoses and neurodegenerative diseases. The susceptibility to aggregation of protein molecules is dealt with by proteostasis in living systems, in which molecular chaperones play an important role. Recently, several secreted proteins have been examined as extracellular chaperones with a potency to suppress the formation of amyloid fibrils, although the whole picture that includes their inhibition mechanisms is not yet understood. In this study, we investigated the inhibitory effect of fibrinogen (Fg), one of the extracellular proteins identified as a potential member of the group of chaperones, on fibril formation. Insulin B chain was used as an amyloid formation model system because its prefibrillar intermediate species in the nucleation phase were well characterized. We revealed that Fg efficiently inhibited amyloid fibril formation via a direct interaction with the surface of the prefibrillar intermediates. Small-angle X-ray scattering experiments and a stoichiometry analysis suggested a structural model in which the surface of the rod-shaped prefibrillar intermediates is surrounded by Fg molecules. From such a specific manner of interactions, we propose that the role of Fg is to disturb fibril growth by confining the nuclei even when the nucleation occurs inside the prefibrillar intermediate. The structural property of the B-chain intermediates complexed with Fg would provide insights into the general principles of the functions of chaperones and other potential chaperone-like proteins involved in amyloid-related diseases.


Assuntos
Proteínas Amiloidogênicas/antagonistas & inibidores , Fibrinogênio/química , Insulina/química , Chaperonas Moleculares/química , Multimerização Proteica , Proteínas Amiloidogênicas/química , Animais , Bovinos , Humanos
9.
J Org Chem ; 84(9): 5535-5547, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-30973736

RESUMO

Environment-sensitive luminophoric molecules have played an important role in the fields of smart materials, sensing, and bioimaging. In this study, it was demonstrated that depending on the substituents, 9-aryl-3-aminocarbazoles can display aggregation-induced emission and solvatofluorochromism, and the operating mechanism was clarified. The application of these compounds to lipid droplet imaging and fluorescent probes for cysteamine was demonstrated.

10.
J Biol Chem ; 292(52): 21219-21230, 2017 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-29101231

RESUMO

Heparin, a biopolymer possessing high negative charge density, is known to accelerate amyloid fibrillation by various proteins. Using hen egg white lysozyme, we studied the effects of heparin on protein aggregation at low pH, raised temperature, and applied ultrasonic irradiation, conditions under which amyloid fibrillation was promoted. Heparin exhibited complex bimodal concentration-dependent effects, either accelerating or inhibiting fibrillation at pH 2.0 and 60 °C. At concentrations lower than 20 µg/ml, heparin accelerated fibrillation through transient formation of hetero-oligomeric aggregates. Between 0.1 and 10 mg/ml, heparin rapidly induced amorphous heteroaggregation with little to no accompanying fibril formation. Above 10 mg/ml, heparin again induced fibrillation after a long lag time preceded by oligomeric aggregate formation. Compared with studies performed using monovalent and divalent anions, the results suggest two distinct mechanisms of heparin-induced fibrillation. At low heparin concentrations, initial hen egg white lysozyme cluster formation and subsequent fibrillation is promoted by counter ion binding and screening of repulsive charges. At high heparin concentrations, fibrillation is caused by a combination of salting out and macromolecular crowding effects probably independent of protein net charge. Both fibrillation mechanisms compete against amorphous aggregation, producing a complex heparin concentration-dependent phase diagram. Moreover, the results suggest an active role for amorphous oligomeric aggregates in triggering fibrillation, whereby breakdown of supersaturation takes place through heterogeneous nucleation of amyloid on amorphous aggregates.


Assuntos
Heparina/farmacologia , Muramidase/química , Agregados Proteicos/fisiologia , Amiloide/química , Amiloide/fisiologia , Proteínas Amiloidogênicas , Amiloidose , Animais , Clara de Ovo , Concentração de Íons de Hidrogênio , Muramidase/fisiologia
11.
PLoS One ; 9(7): e101997, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25013915

RESUMO

The formation of amyloid fibrils proceeds via a nucleation-dependent mechanism in which nucleation phase is generally associated with a high free energy resulting in the rate-limiting step. On the basis of this kinetic feature, the nucleation is one of the most crucial phases controlling the pathogenesis of amyloidoses, but little is known about the details of how protein molecules and surrounding environment vary at this stage. Here, we applied near infrared (NIR) spectral monitoring of water structural changes in real time during the nucleation-dependent fibrillation of insulin. Whilst multivariate spectral analysis in the 2050-2350 nm spectral region indicated cross-ß formation, characteristic transformations of water structure have been detected in the spectral region 1300-1600 nm corresponding to the first overtone of water OH stretching vibrations. Furthermore, specific water spectral patterns (aquagrams) related to different water molecular conformations have been found along the course of protein nucleation and aggregation. Right in the beginning, dissociation of hydrogen-bonded network in bulk water and coinstantaneous protein and ion hydration were observed, followed by water hydrogen-bonded networks development, presumably forcing the nucleation. These specific transformations of water spectral pattern could be used further as a biomarker for early non-invasive diagnosis of amyloidoses prior to explosive amplification and deposits of amyloid fibrils.


Assuntos
Amiloide/química , Água/química , Humanos , Ligação de Hidrogênio , Microscopia de Força Atômica , Simulação de Dinâmica Molecular , Análise Multivariada , Espectroscopia de Infravermelho com Transformada de Fourier , Espectroscopia de Luz Próxima ao Infravermelho
12.
J Biol Chem ; 289(15): 10399-10410, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24569992

RESUMO

Amyloid fibrils are supramolecular assemblies, the deposition of which is associated with many serious diseases including Alzheimer, prion, and Huntington diseases. Several smaller aggregates such as oligomers and protofibrils have been proposed to play a role in early stages of the fibrillation process; however, little is known about how these species contribute to the formation of mature amyloid fibrils with a rigid cross-ß structure. Here, we identified a new pathway for the formation of insulin amyloid fibrils at a high concentration of salt in which mature fibrils were formed in a stepwise manner via a prefibrillar intermediate: minute prefibrillar species initially accumulated, followed by the subsequent formation of thicker amyloid fibrils. Fourier transform infrared spectra suggested the sequential formation of two types of ß-sheets with different strength hydrogen bonds, one of which was developed concomitantly with the mutual assembly of the prefibrillar intermediate to form mature fibrils. Interestingly, fibril propagation and cellular toxicity appeared only after the later step of structural organization, and a comparison of ß-sheet regions between the prefibrillar intermediate and mature fibrils using proteolysis led to the proposal of specific regions essential for manifestation of these properties.


Assuntos
Amiloide/química , Insulina/química , Sequência de Aminoácidos , Animais , Temperatura Alta , Ligação de Hidrogênio , Espectrometria de Massas , Microscopia de Força Atômica , Dados de Sequência Molecular , Células PC12 , Estrutura Secundária de Proteína , Ratos , Sais/química , Cloreto de Sódio/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Fatores de Tempo
13.
J Biol Chem ; 287(27): 22827-37, 2012 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-22566695

RESUMO

The polymorphic property of amyloid structures has been focused on as a molecular basis of the presence and propagation of different phenotypes of amyloid diseases, although little is known about the molecular mechanism for expressing diverse structures from only one protein sequence. Here, we have found that, in combination with an enhancing effect of ultrasonication on nucleation, ß(2)-microglobulin, a protein responsible for dialysis-related amyloidosis, generates distinct fibril conformations in a concentration-dependent manner in the presence of 2,2,2-trifluoroethanol (TFE). Although the newly formed fibrils all exhibited a similar needle-like morphology with an extensive cross-ß core, as suggested by Fourier transform infrared absorption spectra, they differed in thioflavin T intensity, extension kinetics, and tryptophan fluorescence spectra even in the same solvents, representing polymorphic structures. The hydrophobic residues seemed to be more exposed in the fibrils originating at higher concentrations of TFE, as indicated by the increased binding of 1-anilinonaphthalene-8-sulfonic acid, suggesting that the modulation of hydrophobic interactions is critical to the production of polymorphic amyloid structures. Interestingly, the fibrils formed at higher TFE concentrations showed significantly higher stability against guanidium hydrochloride, the perturbation of ionic strength, and, furthermore, pressurization. The cross-ß structure inside the fibrils seems to have been more idealized, resulting in increased stability when nucleation occurred in the presence of the alcohol, indicating that a weaker contribution of hydrophobic interactions is intrinsically more amenable to the formation of a non-defective amyloid structure.


Assuntos
Amiloidose/genética , Deficiências na Proteostase/genética , Ultrassom/métodos , Microglobulina beta-2/química , Microglobulina beta-2/genética , Amiloidose/patologia , Amiloidose/fisiopatologia , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Microscopia Eletrônica de Transmissão , Fenótipo , Polimorfismo Genético/fisiologia , Dobramento de Proteína , Deficiências na Proteostase/patologia , Deficiências na Proteostase/fisiopatologia , Ácido Trifluoracético/farmacologia , Água/química , Microglobulina beta-2/ultraestrutura
14.
J Mol Biol ; 400(5): 1057-66, 2010 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-20595042

RESUMO

Amyloid fibrils elongate seed dependently, with preformed fibrils providing a template for propagation of amyloidogenic conformation. Most seeding experiments use relatively few seed fibrils in comparison with monomers, resembling steady-state enzyme kinetics. Pre-steady-state kinetics should also be useful for characterizing the elongation process. With beta(2)-microglobulin (beta(2)-m), a protein responsible for dialysis-related amyloidosis, we measured the pre-steady-state kinetics of fibril elongation at pH 2.5, conditions under which the monomer is largely unfolded. beta(2)-m has Trp residues at positions 60 and 95. We used three single Trp mutants and fluorescence spectroscopy to study structural change upon fibril elongation. To focus on conformational change in monomers, we prepared seeds with a mutant without a Trp residue. At a fixed concentration of monomeric beta(2)-m, the apparent rate of fibril elongation increased with an increase in the concentration of seeds and then saturated, suggesting the accumulation of a rate-limiting intermediate. Importantly, saturation occurred at a seed/monomer ratio of around 10, as expressed by the concentration of the monomer. Because the number of monomers constituting the seed fibrils is much larger than 10, the results suggest that the elongation process is limited by "non-active-site binding." Spectral analysis indicated that, upon this non-active-site binding, both Trp60 and Trp95 are exposed to the solvent, and then only Trp60 is buried upon transition to the fibrils. We propose a new model of fibril elongation in which non-active-site binding plays a major role.


Assuntos
Amiloide/química , Microglobulina beta-2/química , Sequência de Aminoácidos , Fluorescência , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Conformação Proteica , Sais/química , Microglobulina beta-2/genética
15.
Proc Natl Acad Sci U S A ; 106(27): 11119-24, 2009 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-19564620

RESUMO

Because of the insolubility and polymeric properties of amyloid fibrils, techniques used conventionally to analyze protein structure and dynamics have often been hampered. Ultrasonication can induce the monomeric solution of amyloidogenic proteins to form amyloid fibrils. However, ultrasonication can break down preformed fibrils into shorter fibrils. Here, combining these 2 opposing effects on beta(2)-microglobulin (beta2-m), a protein responsible for dialysis-related amyloidosis, we present that ultrasonication pulses are useful for preparing monodispersed amyloid fibrils of minimal size with an average molecular weight of approximately 1,660,000 (140-mer). The production of minimal and monodispersed fibrils is achieved by the free energy minimum under competition between fibril production and breakdown. The small homogeneous fibrils will be of use for characterizing the structure and dynamics of amyloid fibrils, advancing molecular understanding of amyloidosis.


Assuntos
Amiloide/química , Sonicação , Ultrassom , Amiloide/ultraestrutura , Humanos , Microglobulina beta-2/química , Microglobulina beta-2/ultraestrutura
16.
J Biol Chem ; 284(4): 2169-75, 2009 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-19017634

RESUMO

Volume can provide informative structural descriptions of macromolecules such as proteins in solution because a final volumetric outcome accompanies the exquisite equipoise of packing effects between residues, and residues and waters inside and outside proteins. Here we performed systematic investigations on the volumetric nature of the amyloidogenic conformations of beta2-microglobulin (beta2-m) and its amyloidogenic core peptide, K3, using a high precision densitometer. The transition from the acid-denatured beta2-m to the mature amyloid fibrils was accompanied by a positive change in the partial specific volume, which was larger than that observed for the transition from the acid-denatured beta2-m to the native structure. The data imply that the mature amyloid fibrils are more voluminous than the native structure because of a sparse packing density of side chains. In contrast, the formation of the mature amyloid-like fibrils of the K3 from the random coil was followed by a considerable decrease in the partial specific volume, suggesting a highly compact core structure. Interestingly, the immature amyloid-like fibrils of beta2-m exhibited a volume intermediate between those of the mature fibrils of beta2-m and K3, because of the core structure at their center and the relatively noncompact region around the core with much hydration. These volumetric differences would result from the nature of main-chain-dominated fibrillogenesis. We suggest comprehensive models for these three types of fibrils illustrating packing and hydrational states.


Assuntos
Amiloide/química , Amiloide/metabolismo , Água/metabolismo , Microglobulina beta-2/química , Microglobulina beta-2/metabolismo , Sequência de Aminoácidos , Dicroísmo Circular , Humanos , Microscopia de Força Atômica , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/química , Estrutura Terciária de Proteína , Microglobulina beta-2/genética , Microglobulina beta-2/ultraestrutura
17.
Curr Pharm Des ; 14(30): 3205-18, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19075701

RESUMO

Amyloid fibrils have been a critical subject in recent studies of proteins since they are associated with the pathology of more than 20 serious human diseases. Moreover, a variety of proteins and peptides not related to diseases are able to form amyloid fibrils or amyloid-like structures, implying that amyloid formation is a generic property of polypeptides. Although understanding the structure and formation of amyloid fibrils is crucial, due to the extremely high molecular weight and insolubility of amyloid fibrils, most of the conventional techniques available for soluble proteins are not directly applicable to these fibrils. However, structural studies using solid-state NMR have shown that the basic motif of amyloid fibrils is a beta-strand-loop-beta-strand conformation often in a parallel beta-sheet assembly. From the hydrogen/deuterium exchange of amide protons, amyloid fibrils have been shown to be stabilized by an extensive network of hydrogen bonds substantiating beta-sheets. Our approach using total internal reflection fluorescence microscopy combined with thioflavin T, an amyloid-specific fluorescence dye, enabled monitoring fibril growth in real-time at single fibril level. On the basis of these various approaches, increasingly convincing models of amyloid structures, their formation and propagation are emerging.


Assuntos
Amiloide , Amiloide/biossíntese , Amiloide/química , Amiloide/metabolismo , Animais , Humanos , Ligação de Hidrogênio , Microscopia de Fluorescência , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Estabilidade Proteica
18.
J Mol Biol ; 382(5): 1242-55, 2008 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-18708068

RESUMO

Beta(2)-microglobulin (beta2-m), a protein responsible for dialysis-related amyloidosis, adopts a typical immunoglobulin domain fold with the N-terminal peptide bond of Pro32 in a cis isomer. The refolding of beta2-m is limited by the slow trans-to-cis isomerization of Pro32, implying that intermediates with a non-native trans-Pro32 isomer are precursors for the formation of amyloid fibrils. To obtain further insight into the Pro-limited folding of beta2-m, we studied the Gdn-HCl-dependent unfolding/refolding kinetics using two mutants (W39 and P32V beta2-ms) as well as the wild-type beta2-m. W39 beta2-m is a triple mutant in which both of the authentic Trp residues (Trp60 and Trp95) are replaced by Phe and a buried Trp common to other immunoglobulin domains is introduced at the position of Leu39 (i.e., L39W/W60F/W95F). W39 beta2-m exhibits a dramatic quenching of fluorescence upon folding, enabling a detailed analysis of Pro-limited unfolding/refolding. On the other hand, P32V beta2-m is a mutant in which Pro32 is replaced by Val, useful for probing the kinetic role of the trans-to-cis isomerization of Pro32. A comparative analysis of the unfolding/refolding kinetics of these mutants including three types of double-jump experiments revealed the prolyl isomerization to be coupled with the conformational transitions, leading to apparently unusual kinetics, particularly for the unfolding. We suggest that careful consideration of the kinetic coupling of unfolding/refolding and prolyl isomerization, which has tended to be neglected in recent studies, is essential for clarifying the mechanism of protein folding and, moreover, its biological significance.


Assuntos
Microglobulina beta-2/química , Microglobulina beta-2/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Humanos , Técnicas In Vitro , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Prolina/química , Conformação Proteica , Desnaturação Proteica , Dobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometria de Fluorescência , Estereoisomerismo , Termodinâmica , Triptofano/química , Microglobulina beta-2/metabolismo
19.
J Microbiol Biotechnol ; 17(12): 2027-32, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18167451

RESUMO

alpha-Synuclein is the major component of Lewy bodies and responsible for the amyloid deposits observed in Parkinson's disease. Ordered filamentous aggregate formation of the natively unfolded a-synuclein was investigated in vitro with the periodic ultrasonication. The ultrasonication induced the fibrillation of a-synuclein, as the random structure gradually converted into a beta-sheet structure. The resulting fibrils obtained at the stationary phase appeared heterogeneous in their size distribution, with the average length and height of 0.28 Mm+/-0.21 Mm and 5.6 nm+/-1.9 nm, respectively. After additional extensive ultrasonication in the absence of monomeric a-synuclein, the equilibrium between the fibril formation and its breakdown shifted to the disintegration of the preexisting fibrils. The resulting fragments served as nucleation centers for the subsequent seed-dependent accelerated fibrillation under a quiescent incubation condition. This self-seeding amplification process depended on the seed formation and subsequent alterations in their properties by the ultrasonication to a state that accretes the monomeric soluble protein more effectively than their reassociation of the seeds back to the original fibrils. Since many neurodegenerative disorders have been considered to be propagated via the seed-dependent amyloidosis, this study would provide a novel aspect of the significance of the seed structure and its properties leading to the accelerated amyloid formation.


Assuntos
Corpos de Lewy/metabolismo , alfa-Sinucleína/metabolismo , Dicroísmo Circular , Cinética , Corpos de Lewy/química , Microscopia de Força Atômica , Dobramento de Proteína , Estrutura Secundária de Proteína , Ultrassom , alfa-Sinucleína/química
20.
J Biol Chem ; 281(41): 31061-9, 2006 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-16901902

RESUMO

Beta2-microglobulin (beta2-m), a protein responsible for dialysis-related amyloidosis, adopts an immunoglobulin domain fold in its native state. Although beta2-m has Trp residues at positions 60 and 95, both are located near the surface of the domain. Hence, beta2-m does not have a conserved Trp common to other immunoglobulin domains, which is buried in close proximity to the disulfide bond. To study the structure of amyloid fibrils in relation to their native fold, we prepared a series of Trp mutants. Trp60 and Trp95 were both replaced with Phe, and a single Trp was introduced at various positions. Among various mutants, W39-beta2-m, in which a Trp was introduced at the position corresponding to the conserved Trp, exhibited a remarkable quenching of fluorescence in the native state, as observed for other immunoglobulin domains. An x-ray structural analysis revealed that W39-beta2-m assumes the native fold with Trp39 located in the vicinity of the disulfide bond. Comparison of the fluorescence spectra of various mutants for the native and fibrillar forms indicated that, while the Trp residues introduced in the middle of the beta2-m sequence tend to be buried in the fibrils, those located in the C-terminal region are more exposed. In addition, the fluorescence spectra of fibrils prepared at pH 2.5 and 7.0 revealed a large difference in the fluorescence intensity for W60-beta2-m, implying a major structural difference between them.


Assuntos
Amiloide/química , Mutagênese , Triptofano/química , Microglobulina beta-2/química , Sequência de Aminoácidos , Dissulfetos/química , Humanos , Concentração de Íons de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Desnaturação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA