Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Food Chem ; 463(Pt 2): 141322, 2025 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-39303471

RESUMO

Approximately 30 % of global agricultural land is used to produce food that is ultimately lost or wasted, making it imperative to explore strategies for mitigating this waste. This study explored the potential of chitosan (CS) derivatives as edible coatings to extend food shelf life. Although soluble CS derivatives such as glycol CS are suitable coatings, their antimicrobial properties often diminish with increased solubility. To address this issue, gallic acid (GA), a polyphenol, was conjugated with CS using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide/N-hydroxysuccinimide (EDC/NHS) chemistry to create edible coating solutions. The resulting CS-GA films exhibited remarkable solubility, mechanical strength, UV-blocking properties, and superior antioxidant and antimicrobial properties. Furthermore, these films exhibited a high affinity for hydrophobic fruit surfaces while also facilitating easy washing, making them an alternative for consumers who are averse to film-coated products. The CS-GA-coated fruits exhibited minimal surface spoilage, decreased mass loss, and increased firmness. Therefore, these CS-GA conjugate coatings hold significant potential as eco-friendly, edible, and washable food packaging coatings.


Assuntos
Quitosana , Filmes Comestíveis , Embalagem de Alimentos , Conservação de Alimentos , Frutas , Ácido Gálico , Quitosana/química , Frutas/química , Ácido Gálico/química , Embalagem de Alimentos/instrumentação , Conservação de Alimentos/métodos , Conservação de Alimentos/instrumentação , Antioxidantes/química , Antioxidantes/farmacologia
2.
J Virol ; 97(11): e0079523, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37902401

RESUMO

IMPORTANCE: African swine fever virus (ASFV), the only known DNA arbovirus, is the causative agent of African swine fever (ASF), an acutely contagious disease in pigs. ASF has recently become a crisis in the pig industry in recent years, but there are no commercially available vaccines. Studying the immune evasion mechanisms of ASFV proteins is important for the understanding the pathogenesis of ASFV and essential information for the development of an effective live-attenuated ASFV vaccines. Here, we identified ASFV B175L, previously uncharacterized proteins that inhibit type I interferon signaling by targeting STING and 2'3'-cGAMP. The conserved B175L-zf-FCS motif specifically interacted with both cGAMP and the R238 and Y240 amino acids of STING. Consequently, this interaction interferes with the interaction of cGAMP and STING, thereby inhibiting downstream signaling of IFN-mediated antiviral responses. This novel mechanism of B175L opens a new avenue as one of the ASFV virulent genes that can contribute to the advancement of ASFV live-attenuated vaccines.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Interferon Tipo I , Proteínas de Membrana , Nucleotídeos Cíclicos , Suínos , Proteínas Virais , Animais , Febre Suína Africana/imunologia , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/química , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/imunologia , Vírus da Febre Suína Africana/patogenicidade , Interferon Tipo I/antagonistas & inibidores , Interferon Tipo I/imunologia , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Nucleotídeos Cíclicos/antagonistas & inibidores , Nucleotídeos Cíclicos/metabolismo , Suínos/imunologia , Suínos/virologia , Vacinas Atenuadas/imunologia , Proteínas Virais/metabolismo , Vacinas Virais/imunologia , Interações entre Hospedeiro e Microrganismos
3.
ACS Appl Mater Interfaces ; 15(16): 20435-20443, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37053446

RESUMO

Face masks are increasingly important in the battle against infectious diseases and air pollution. Nanofibrous membranes (NFMs) are promising filter layers for removing particulate matter (PM) without restricting air permeability. In this study, tannic-acid-enriched poly(vinyl alcohol) (PVA-TA) NFMs were fabricated by electrospinning PVA solutions containing large amounts of tannic acid (TA), a multifunctional polyphenol compound. We were able to prepare uniform electrospinning solution without coacervate formation by inhibiting the robust hydrogen bonding between PVA and TA. Notably, the NFM maintained its fibrous structure even under moist conditions after heat treatment without the use of a cross-linking agent. Further, the mechanical strength and thermal stability of the PVA NFM were improved by the introduction of TA. The functional PVA NFM with a high TA content showed excellent UV-shielding (UV-A: 95.7%, UV-B: 100%) and antibacterial activity against Escherichia coli (inhibition zone: 8.7 ± 1.2 mm) and Staphylococcus aureus (inhibition zone: 13.7 ± 0.6 mm). Moreover, the particle filtration efficiency of the PVA-TA NFM for PM0.6 particles was 97.7% at 32 L min-1 and 99.5% at 85 L min-1, indicating excellent filtration performance and a low pressure drop. Therefore, the TA-enriched PVA NFM is a promising mask filter layer material with excellent UV-blocking and antibacterial properties and has the potential for various practical applications.


Assuntos
Nanofibras , Álcool de Polivinil , Álcool de Polivinil/química , Nanofibras/química , Máscaras , Antibacterianos/farmacologia , Antibacterianos/química , Filtração , Material Particulado , Taninos
4.
Viruses ; 14(9)2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36146866

RESUMO

Foot-and-mouth disease (FMD) is mainly characterized by blister formation (vesicles) in animals infected with foot-and-mouth disease virus (FMDV). However, the molecular basis of the blister formation in FMD is still unknown. BP180 is one of the main anchoring proteins connecting the dermal and epidermal layers of the skin. Previous studies have shown that the cleavage of BP180 by proteases produced by the inflammatory cells and the resulting skin loosening are major causes of the blister formation in bullous pemphigoid (BP) disease. Similar to BP, here we have demonstrated that, among the FMDV-encoded proteases, only FMDV 3Cpro contributes to the cleavage of BP180 at multiple sites, consequently inducing the degradation of BP180, leading to skin loosening. Additionally, we confirmed that FMDV 3Cpro interacts directly with BP180 and the FMDV 3Cpro C142T mutant, known to have reduced protease activity, is less effective for BP180 degradation than wild-type FMDV 3Cpro. In conclusion, for the first time, our results demonstrate the function of FMDV 3Cpro on the connective-tissue protein BP180 associated with blister formation.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Animais , Vesícula , Cisteína Endopeptidases/metabolismo , Vírus da Febre Aftosa/metabolismo , Peptídeo Hidrolases , Proteínas Virais/genética , Proteínas Virais/metabolismo
5.
Front Microbiol ; 12: 737031, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867853

RESUMO

3C protease (3Cpro), a chymotrypsin-like cysteine protease encoded by the foot-and-mouth disease virus (FMDV), plays an essential role in processing the FMDV P1 polyprotein into individual viral capsid proteins in FMDV replication. Previously, it has been shown that 3Cpro is involved in the blockage of the host type-I interferon (IFN) responses by FMDV. However, the underlying mechanisms are poorly understood. Here, we demonstrated that the protease activity of 3Cpro contributed to the degradation of RIG-I and MDA5, key cytosolic sensors of the type-I IFN signaling cascade in proteasome, lysosome and caspase-independent manner. And also, we examined the degradation ability on RIG-I and MDA5 of wild-type FMDV 3Cpro and FMDV 3Cpro C142T mutant which is known to significantly alter the enzymatic activity of 3Cpro. The results showed that the FMDV 3Cpro C142T mutant dramatically reduce the degradation of RIG-I and MDA5 due to weakened protease activity. Thus, the protease activity of FMDV 3Cpro governs its RIG-I and MDA5 degradation ability and subsequent negative regulation of the type-I IFN signaling. Importantly, FMD viruses harboring 3Cpro C142T mutant showed the moderate attenuation of FMDV in a pig model. In conclusion, our results indicate that a novel mechanism evolved by FMDV 3Cpro to counteract host type-I IFN responses and a rational approach to virus attenuation that could be utilized for future vaccine development.

6.
J Colloid Interface Sci ; 601: 143-155, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34058550

RESUMO

HYPOTHESIS: Functional adhesives with excellent adhesive strength in wet as well as dry environments are actively studied for various applications. In particular, the adhesion mechanism of marine organisms has been imitated to achieve strong adhesion in wet environments. EXPERIMENTS: Polyallylamine (PAA) was modified with catechol groups (CA), which mimic the mussel adhesion proteins, and gallol groups (GA) found in tunicates to compare the gelation, self-healing, and adhesive properties of the modified polymers according to pH change. The effect of the Schiff base formation and antioxidant capacity exerted by polyphenolic groups were investigated by comparing the self-healing behaviors of the two hydrogels. Furthermore, the wet adhesion and antibacterial properties of the PAA-CA and PAA-GA hydrogels were evaluated in terms of the synergistic effects of the amino groups and catechol or gallol groups. FINDINGS: The self-crosslinkable PAA-CA and PAA-GA hydrogels showed high self-healing ability owing to these dynamic imine bonds. Furthermore, the PAA-based hydrogels showed higher adhesive strength in wet environments than in dry environments owing to the synergism between the catechol or gallol groups and amino groups. Overall, the PAA-GA hydrogels are superior to the PAA-CA ones, indicating that gallol-functionalized hydrogels have great potential as multifunctional adhesives.


Assuntos
Hidrogéis , Urocordados , Adesivos , Animais , Catecóis , Poliaminas
7.
Exp Mol Med ; 51(12): 1-13, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31827068

RESUMO

During viral infection, virus-derived cytosolic nucleic acids are recognized by host intracellular specific sensors. The efficacy of this recognition system is crucial for triggering innate host defenses, which then stimulate more specific adaptive immune responses against the virus. Recent studies show that signal transduction pathways activated by sensing proteins are positively or negatively regulated by many modulators to maintain host immune homeostasis. However, viruses have evolved several strategies to counteract/evade host immune reactions. These systems involve viral proteins that interact with host sensor proteins and prevent them from detecting the viral genome or from initiating immune signaling. In this review, we discuss key regulators of cytosolic sensor proteins and viral proteins based on experimental evidence.


Assuntos
Genoma Viral/genética , Imunidade Inata/fisiologia , Animais , Citoplasma/metabolismo , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata/genética , Helicase IFIH1 Induzida por Interferon/genética , Helicase IFIH1 Induzida por Interferon/metabolismo , RNA Helicases/genética , RNA Helicases/metabolismo , Receptores Imunológicos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
8.
PLoS Pathog ; 15(8): e1008004, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31412082

RESUMO

Fas-associated factor 1 is a death-promoting protein that induces apoptosis by interacting with the Fas receptor. Until now, FAF1 was reported to interact potentially with diverse proteins and to function as a negative and/or positive regulator of several cellular possesses. However, the role of FAF1 in defense against bacterial infection remains unclear. Here, we show that FAF1 plays a pivotal role in activating NADPH oxidase in macrophages during Listeria monocytogenes infection. Upon infection by L. monocytogenes, FAF1 interacts with p67phox (an activator of the NADPH oxidase complex), thereby facilitating its stabilization and increasing the activity of NADPH oxidase. Consequently, knockdown or ectopic expression of FAF1 had a marked effect on production of ROS, proinflammatory cytokines, and antibacterial activity, in macrophages upon stimulation of TLR2 or after infection with L. monocytogenes. Consistent with this, FAF1gt/gt mice, which are knocked down in FAF1, showed weaker inflammatory responses than wild-type mice; these weaker responses led to increased replication of L. monocytogenes. Collectively, these findings suggest that FAF1 positively regulates NADPH oxidase-mediated ROS production and antibacterial defenses.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Proteínas Reguladoras de Apoptose/fisiologia , Imunidade Inata/imunologia , Inflamação/imunologia , Listeriose/imunologia , Macrófagos/imunologia , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Citocinas/metabolismo , Inflamação/metabolismo , Inflamação/microbiologia , Listeria monocytogenes/imunologia , Listeriose/metabolismo , Listeriose/microbiologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , NADPH Oxidases/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Transdução de Sinais
9.
J Microbiol ; 55(11): 909-917, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29076073

RESUMO

Dense granule protein-7 (GRA-7) is an excretory protein of Toxoplasma gondii. It is a potential serodiagnostic marker and vaccine candidate for toxoplasmosis. Previous reports demonstrated that GRA-7 induces innate immune responses in macrophages by interacting with TRAF6 via the MyD88-dependent pathway. In the present study, we evaluated the antiviral activity and induction of an antiviral state by GRA-7 both in vitro and in vivo. It was observed that GRA-7 markedly reduced the replication of vesicular stomatitis virus (VSV-GFP), influenza A virus (PR8-GFP), coxsackievirus (H3-GFP), herpes simplex virus (HSV-GFP), and adenovirus-GFP in epithelial (HEK293T/HeLa) and immune (RAW264.7) cells. These antiviral activities of GRA-7 were attributed to the induction of type I interferon (IFN) signaling, resulting in the secretion of IFNs and pro-inflammatory cytokines. Additionally, in BALB/c mice, intranasal administration of GRA-7 prevented lethal infection by influenza A virus (H1N1) and exhibited prophylactic effects against respiratory syncytial virus (RSV-GFP). Collectively, these results suggested that GRA-7 exhibits immunostimulatory and broad spectrum antiviral activities via type I IFN signaling. Thus, GRA-7 can be potentially used as a vaccine adjuvant or as a candidate drug with prophylactic potential against viruses.


Assuntos
Proteínas de Protozoários/farmacologia , Toxoplasma/química , Replicação Viral/efeitos dos fármacos , Vírus/efeitos dos fármacos , Animais , Antivirais/administração & dosagem , Antivirais/farmacologia , Citocinas , Enterovirus/efeitos dos fármacos , Feminino , Células HEK293 , Células HeLa , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A/efeitos dos fármacos , Influenza Humana/tratamento farmacológico , Influenza Humana/virologia , Interferon Tipo I/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/virologia , Proteínas de Protozoários/isolamento & purificação , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Infecções por Vírus Respiratório Sincicial/virologia , Simplexvirus/efeitos dos fármacos , Vesiculovirus/efeitos dos fármacos , Viroses/prevenção & controle , Viroses/virologia
10.
J Microbiol ; 55(6): 488-498, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28551874

RESUMO

Coptidis Rhizoma is derived from the dried rhizome of Ranunculaceous plants and is a commonly used traditional Chinese medicine. Although Coptidis Rhizoma is commonly used for its many therapeutic effects, antiviral activity against respiratory syncytial virus (RSV) has not been reported in detail. In this study, we evaluated the antiviral activities of Coptidis Rhizoma extract (CRE) against RSV in human respiratory tract cell line (HEp2) and BALB/c mice. An effective dose of CRE significantly reduces the replication of RSV in HEp2 cells and reduces the RSV-induced cell death. This antiviral activity against RSV was through the induction of type I interferon-related signaling and the antiviral state in HEp2 cells. More importantly, oral administration of CRE exhibited prophylactic effects in BALB/c mice against RSV. In HPLC analysis, we found the presence of several compounds in the aqueous fraction and among them; we confirmed that palmatine was related to the antiviral properties and immunemodulation effect. Taken together, an extract of Coptidis Rhizoma and its components play roles as immunomodulators and could be a potential source as promising natural antivirals that can confer protection to RSV. These outcomes should encourage further allied studies in other natural products.


Assuntos
Antivirais/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Vírus Sincicial Respiratório Humano/crescimento & desenvolvimento , Replicação Viral/efeitos dos fármacos , Animais , Alcaloides de Berberina/farmacologia , Linhagem Celular , Coptis chinensis , Humanos , Fatores Imunológicos/farmacologia , Interferon beta/metabolismo , Interleucina-6/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Extratos Vegetais/farmacologia , Vírus Sincicial Respiratório Humano/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA