Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 53(28): 11914-11927, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38958025

RESUMO

Currently, there are many uses of metal complexes, especially in the fields of medicinal chemistry and catalysis. Thus, fabrication of new complexes which perform as a catalyst and chemotherapeutic drug is always a beneficial addition to the literature. Herein, we report three heterocyclic thiosemicarbazone-based Pd(II) complexes [Pd(HL1)Cl] (C1), [Pd(L2)(PPh3)] (C2) and [Pd(L3)(PPh3)]Cl (C3) having coligands Cl and PPh3. Thiosemicarbazone ligands (H2L1, H2L2 and HL3) and the complexes (C1-C3) were characterized methodically using several spectroscopic techniques. Single-crystal X-ray diffraction methods reveal that the structural environment around the metal center of C2 is square planar, while for C1 and C3 it is a slighty distorted square plane. The supramolecular network of compounds was built via hydrogen bonds, C-H⋯π and π⋯π interactions. Density functional theory (DFT) study of the structure of the complexes supports experimental findings. The application of these complexes as catalysts toward Suzuki-Miyaura coupling reactions has been examined with various aryl halides and phenyl boronic acid in PEG 400 solvent. The complexes displayed good biomolecular interactions with DNA/protein, with a binding constant value of the order of 105 M-1. C3 showed greater binding efficacy toward these biomolecules than the other complexes, which might be due to the cationic nature of C3. Furthermore, antitumor activity of the complexes was studied against the human triple-negative breast cancer (TNBC) cell line MDA-MB-231. It was found that C3 was more toxic (IC50 = 10 ± 2.90 µM) toward MDA-MB-231 cells than the other complexes. A known chemotherapeutic drug, 5-fluorouracil, was included as positive control. The programmed cell death mechanism of C3 was confirmed. Additionally, complex-induced apoptosis was confirmed and occurred via a mitochondria-dependent (intrinsic) pathway.


Assuntos
Antineoplásicos , Complexos de Coordenação , Paládio , Tiossemicarbazonas , Paládio/química , Paládio/farmacologia , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Tiossemicarbazonas/química , Tiossemicarbazonas/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Catálise , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Estrutura Molecular , Proliferação de Células/efeitos dos fármacos , Teoria da Densidade Funcional , Modelos Moleculares , Apoptose/efeitos dos fármacos
2.
Small ; : e2402953, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38923392

RESUMO

While peptide-based drug development is extensively explored, this strategy has limitations due to rapid excretion from the body (or shorter half-life in the body) and vulnerability to protease-mediated degradation. To overcome these limitations, a novel strategy for the development of a peptide-based anticancer agent is introduced, utilizing the conformation switch property of a chameleon sequence stretch (PEP1) derived from a mycobacterium secretory protein, MPT63. The selected peptide is then loaded into a new porous organic polymer (PG-DFC-POP) synthesized using phloroglucinol and a cresol derivative via a condensation reaction to deliver the peptide selectively to cancer cells. Utilizing ensemble and single-molecule approaches, this peptide undergoes a transition from a disordered to an alpha-helical conformation, triggered by the acidic environment within cancer cells that is demonstrated. This adopted alpha-helical conformation resulted in the formation of proteolysis-resistant oligomers, which showed efficient membrane pore-forming activity selectively for negatively charged phospholipids accumulated in cancer cell membranes. The experimental results demonstrated that the peptide-loaded PG-DFC-POP-PEP1 exhibited significant cytotoxicity in cancer cells, leading to cell death through the Pyroptosis pathway, which is established by monitoring numerous associated events starting from lysosome membrane damage to GSDMD-induced cell membrane demolition. This novel conformational switch-based drug design strategy is believed to have great potential in endogenous environment-responsive cancer therapy and the development of future drug candidates to mitigate cancers.

3.
J Mater Chem B ; 11(28): 6646-6663, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37366114

RESUMO

Quercetin (Qu), a potential bioflavonoid has gained considerable interest as a promising chemotherapeutic drug which can inhibit the proliferation of triple-negative breast cancer (TNBC) cells due to its regulation of the expression of tumor-suppressor gene metastasis and antioxidant property. Notably, Qu exhibits a very negligible cytotoxic effect on normal cells, even with high-dose treatment, while it is shows high affinity to TNBC. However, the efficiency of Qu is limited clinically due to its poor bioavailability, caused by its low aqueous solubility (2.15 µg mL-1 at 25 °C), rapid gastrointestinal digestion and chemical instability in alkaline and neutral media. Herein, polydopamine (PDA)-coated, NH2-PEG-NH2 and hyaluronic acid (HA)-functionalized Gd3+-doped Prussian blue nanocubes (GPBNC) are reported as a multifunctional platform for the codelivery of Qu as a chemotherapeutic agent and GPBNC as a photodynamic (PDT) and photothermal (PTT) agent with improved therapeutic efficiency to overcome theses barriers. PDA, NH2-PEG-NH2 and HA stabilize GPBNC@Qu and facilitate bioavailability and active-targeting, while absorption of near infrared (NIR) (808 nm; 1 W cm-2) induces PDT and PTT activities and dual T1-T2-weighted magnetic resonance imaging (MRI) with high relaxometric parameters (r1 10.06 mM-1 s-1 and r2 24.96 mM-1 s-1 at a magnetic field of 3 T). The designed platform shows a pH-responsive Qu release profile and NIR-induced therapeutic efficiency of ∼79% in 20 minutes of irradiation, wherein N-terminal gardermin D (N-GSDMD) and a P2X7-receptor-mediated pyroptosis pathway induces cell death, corroborating the up-regulation of NLRP3, caspase-1, caspase-5, N-GSDMD, IL-1ß, cleaved Pannexin-1 and P2X7 proteins. More interestingly, the increasing relaxivity values of Prussian blue nanocubes with Gd3+ doping have been explained on the basis of Solomon-Bloembergen-Morgan theory, considering inner- and outer-sphere relaxivity, wherein crystal defects, coordinated water molecules, tumbling rate, metal to water proton distance, correlation time, magnetisation value etc. play a significant role. In summary, our study suggests that GPBNC could be a beneficial nanocarrier for theranostic purposes against TNBC, while our conceptual study clearly demonstrates the role of various factors in increasing relaxometric parameters.


Assuntos
Quercetina , Neoplasias de Mama Triplo Negativas , Humanos , Quercetina/farmacologia , Células MDA-MB-231 , Neoplasias de Mama Triplo Negativas/patologia , Imageamento por Ressonância Magnética/métodos , Água , Caspases
4.
Commun Biol ; 4(1): 518, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33941845

RESUMO

The fibrillation pathway of alpha-Synuclein, the causative protein of Parkinson's disease, encompasses transient, heterogeneous oligomeric forms whose structural understanding and link to toxicity are not yet understood. We report that the addition of the physiologically-available small molecule heme at a sub-stoichiometric ratio to either monomeric or aggregated α-Syn, targets a His50 residue critical for fibril-formation and stabilizes the structurally-heterogeneous populations of aggregates into a minimally-toxic oligomeric state. Cryo-EM 3D reconstruction revealed a 'mace'-shaped structure of this monodisperse population of oligomers, which is comparable to a solid-state NMR Greek key-like motif (where the core residues are arranged in parallel in-register sheets with a Greek key topology at the C terminus) that forms the fundamental unit/kernel of protofilaments. Further structural analyses suggest that heme binding induces a distortion in the Greek key-like architecture of the mace oligomers, which impairs their further appending into protofilaments and fibrils. Additionally, our study reports a novel mechanism of prevention as well as reclamation of amyloid fibril formation by blocking an inter-protofilament His50 residue using a small molecule.


Assuntos
Amiloide/química , Heme/metabolismo , Neuroblastoma/patologia , Multimerização Proteica , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Heme/química , Humanos , Neuroblastoma/metabolismo , Conformação Proteica , Células Tumorais Cultivadas
5.
Elife ; 102021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33825682

RESUMO

Aggregation of Cu-Zn superoxide dismutase (SOD1) is implicated in the motor neuron disease, amyotrophic lateral sclerosis (ALS). Although more than 140 disease mutations of SOD1 are available, their stability or aggregation behaviors in membrane environment are not correlated with disease pathophysiology. Here, we use multiple mutational variants of SOD1 to show that the absence of Zn, and not Cu, significantly impacts membrane attachment of SOD1 through two loop regions facilitating aggregation driven by lipid-induced conformational changes. These loop regions influence both the primary (through Cu intake) and the gain of function (through aggregation) of SOD1 presumably through a shared conformational landscape. Combining experimental and theoretical frameworks using representative ALS disease mutants, we develop a 'co-factor derived membrane association model' wherein mutational stress closer to the Zn (but not to the Cu) pocket is responsible for membrane association-mediated toxic aggregation and survival time scale after ALS diagnosis.


Amyotrophic lateral sclerosis, or ALS, is an incurable neurodegenerative disease in which a person slowly loses specialized nerve cells that control voluntary movement. It is not fully understood what causes this fatal disease. However, it is suspected that clumps, or aggregates, of a protein called SOD1 in nerve cells may play a crucial role. More than 140 mutations in the gene for SOD1 have been linked to ALS, with varying degrees of severity. But it is still unclear how these mutations cause SOD1 aggregation or how different mutations influence the survival rate of the disease. The protein SOD1 contains a copper ion and a zinc ion, and it is possible that mutations that affect how these two ions bind to SOD1 influences the severity of the disease. To investigate this, Sannigrahi, Chowdhury, Das et al. genetically engineered mutants of the SOD1 protein which each contain only one metal ion. Experiments on these mutated proteins showed that the copper ion is responsible for the protein's role in neutralizing harmful reactive molecules, while the zinc ion stabilizes the protein against aggregation. Sannigrahi et al. found that when the zinc ion was removed, the SOD1 protein attached to a structure inside the cell called the mitochondria and formed toxic aggregates. Sannigrahi et al. then used these observations to build a computational model that incorporated different mutations that have been previously associated with ALS. The model suggests that mutations close to the site where zinc binds to the SOD1 protein increase disease severity and shorten survival time after diagnosis. This model was then experimentally validated using two disease variants of ALS that have mutations close to the sites where zinc or copper binds. These findings still need to be tested in animals and humans to see if these mechanisms hold true in a multicellular organism. This discovery could help design new ALS treatments that target the zinc binding site on SOD1 or disrupt the protein's interactions with the mitochondria.


Assuntos
Esclerose Lateral Amiotrófica/enzimologia , Membrana Celular/enzimologia , Neurônios/enzimologia , Superóxido Dismutase-1/metabolismo , Zinco/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Sítios de Ligação , Linhagem Celular Tumoral , Membrana Celular/patologia , Cobre/metabolismo , Humanos , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Neurônios/patologia , Agregados Proteicos , Agregação Patológica de Proteínas , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Relação Estrutura-Atividade , Superóxido Dismutase-1/genética
7.
ACS Omega ; 5(27): 16395-16405, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32685802

RESUMO

We report here the preparation of an aminoxy amide-based pseudopeptide-derived building block using furanoid sugar molecules. Through the cyclo-oligomerization reaction, we generate a hybrid triazole/aminoxy amide macrocycle using the as-prepared building block. The novel conformation of the macrocycle has been characterized using NMR and molecular modeling studies, which show a strong resemblance of our synthesized compound to d-,l-α-aminoxy acid-based cyclic peptides that contain uniform backbone chirality. We observe that the macrocycle can efficiently and selectively bind Cl- ion and transport Cl- ion across a lipid bilayer. 1H NMR anion binding studies suggest a coherent relationship between the acidity of aminoxy amide N-H and triazole C-H proton binding strength. Using time-based fluorescence assay, we show that the macrocycle acts as a mobile transporter and follows an antiport mechanism. Our synthesized macrocycle imposes cancer cell death by disrupting ionic homeostasis through Cl- ion transport. The macrocycle induced cytochrome c leakage and changes in mitochondrial membrane potential along with activation of family of caspases, suggesting that the cellular apoptosis occurs through a caspase-dependent intrinsic pathway. The present results suggest the possibility of using the macrocycle as a biological tool of high therapeutic value.

8.
EMBO Mol Med ; 12(3): e11011, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32031337

RESUMO

HuR is a miRNA derepressor protein that can act as miRNA sponge for specific miRNAs to negate their action on target mRNAs. Here we have identified how HuR, by inducing extracellular vesicles-mediated export of miRNAs, ensures robust derepression of miRNA-repressed cytokines essential for strong pro-inflammatory response in activated mammalian macrophages. Leishmania donovani, the causative agent of visceral leishmaniasis, on the contrary alters immune response of the host macrophage by a variety of complex mechanisms to promote anti-inflammatory response essential for the survival of the parasite. We have found that during Leishmania infection, the pathogen targets HuR to promote onset of anti-inflammatory response in mammalian macrophages. In infected macrophages, Leishmania also upregulate protein phosphatase 2A that acts on Ago2 protein to keep it in dephosphorylated and miRNA-associated form. This causes robust repression of the miRNA-targeted pro-inflammatory cytokines to establish an anti-inflammatory response in infected macrophages. HuR has an inhibitory effect on protein phosphatase 2A expression, and mathematical modelling of macrophage activation process supports antagonistic miRNA-modulatory roles of HuR and protein phosphatase 2A which mutually balances immune response in macrophage by targeting miRNA function. Supporting this model, ectopic expression of the protein HuR and simultaneous inhibition of protein phosphatase 2A induce strong pro-inflammatory response in the host macrophage to prevent the virulent antimonial drug-sensitive or drug-resistant form of L. donovani infection. Thus, HuR can act as a balancing factor of immune responses to curtail the macrophage infection process by the protozoan parasite.


Assuntos
Proteína Semelhante a ELAV 1/metabolismo , Leishmania donovani , Ativação de Macrófagos , Macrófagos/parasitologia , MicroRNAs , Animais , Leishmaniose Visceral
9.
Chem Commun (Camb) ; 55(74): 11052-11055, 2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31453599

RESUMO

Parkinson's disease (PD), closely associated with the misfolding and aggregation of the neuronal protein α-synuclein (A-Syn), is a neurodegenerative disorder with no cure to date. Here, we show that the commercially available, inexpensive, aminoglycoside antibiotic kanamycin effectively inhibits both lipid-induced and solution-phase aggregation of A-Syn in vitro, pointing towards the prospective repurposing of kanamycin as a potential anti-PD drug.


Assuntos
Antibacterianos/farmacologia , Canamicina/farmacologia , Multimerização Proteica/efeitos dos fármacos , alfa-Sinucleína/metabolismo , Antibacterianos/química , Antibacterianos/metabolismo , Linhagem Celular Tumoral , Humanos , Canamicina/química , Canamicina/metabolismo , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Fosfatidilserinas/química , Ligação Proteica/efeitos dos fármacos , Conformação Proteica/efeitos dos fármacos , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo
10.
ACS Chem Biol ; 14(7): 1601-1610, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31241303

RESUMO

Virulent Mycobacterium tuberculosis (MTB) strains cause cell death of macrophages (Mϕ) inside TB granuloma using a mechanism which is not well understood. Many bacterial systems utilize toxins to induce host cell damage, which occurs along with immune evasion. These toxins often use chameleon sequences to generate an environment-sensitive conformational switch, facilitating the process of infection. The presence of toxins is not yet known for MTB. Here, we show that MTB-secreted immunogenic MPT63 protein undergoes a switch from ß-sheet to helix in response to mutational and environmental stresses. MPT63 in its helical form creates pores in both synthetic and Mϕ membranes, while the native ß-sheet protein remains inert toward membrane interactions. Using fluorescence correlation spectroscopy and atomic force microscopy, we show further that the helical form undergoes self-association to produce toxic oligomers of different morphology. Trypan blue and flow cytometry analyses reveal that the helical state can be utilized by MTB for killing Mϕ cells. Collectively, our study emphasizes for the first time a toxin-like behavior of MPT63 induced by an environment-dependent conformational switch, resulting in membrane pore formation by toxic oligomers and Mϕ cell death.


Assuntos
Proteínas de Bactérias/metabolismo , Macrófagos/microbiologia , Mycobacterium tuberculosis/fisiologia , Tuberculose/metabolismo , Proteínas de Bactérias/química , Morte Celular , Membrana Celular/microbiologia , Membrana Celular/patologia , Interações Hospedeiro-Patógeno , Humanos , Macrófagos/patologia , Modelos Moleculares , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Tuberculose/microbiologia , Tuberculose/patologia
11.
Mol Neurobiol ; 56(9): 6551-6565, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30868446

RESUMO

The amyloid cascade hypothesis dealing with the senile plaques is until date thought to be one of the causative pathways leading to the pathophysiology of Alzheimer's disease (AD). Though many aggregation inhibitors of misfolded amyloid beta (Aß42) peptide have failed in clinical trials, there are some positive aspects of the designed therapeutic peptides for diseases involving proteinaceous aggregation. Here, we evaluated a smart design of side chain tripeptide (Leu-Val-Phe)-based polymeric inhibitor addressing the fundamental hydrophobic amino acid stretch "Lys-Leu-Val-Phe-Phe-Ala" (KLVFFA) of the Aß42 peptide. The in vitro analyses performed through the thioflavin T (ThT) fluorescence assay, infrared spectroscopy, isothermal calorimetry, cytotoxicity experiments, and so on evinced a promising path towards the development of new age AD therapeutics targeting the inhibition of misfolded Aß42 peptide fibrillization. The in silico simulations done contoured the mechanism of drug action of the present block copolymer as the competitive inhibition of aggregate-prone hydrophobic stretch of Aß42. Graphical abstract The production of misfolded Aß42 peptide from amyloid precursor protein initiates amyloidosis pathway which ends with the deposition of fibrils via the oligomerization and aggregation of Aß42 monomers. The side chain tripeptide-based PEGylated polymer targets these Aß42 monomers and oligomers inhibiting their aggregation. This block copolymer also binds and helps degrading the preformed fibrils of Aß42.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Polietilenoglicóis/química , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/ultraestrutura , Morte Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Ligantes , Simulação de Dinâmica Molecular , Polietilenoglicóis/síntese química , Eletricidade Estática
12.
BMC Bioinformatics ; 19(Suppl 13): 549, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30717651

RESUMO

BACKGROUND: Malignant diseases have become a threat for health care system. A panoply of biological processes is involved as the cause of these diseases. In order to unveil the mechanistic details of these diseased states, we analyzed protein families relevant to these diseases. RESULTS: Our present study pivots around four apparently unrelated cancer types among which two are commonly occurring viz. Prostate Cancer, Breast Cancer and two relatively less frequent viz. Acute Lymphoblastic Leukemia and Lymphoma. Eight protein families were found to have implications for these cancer types. Our results strikingly reveal that some of the proteins with implications in the cancerous cellular states were showing the structural organization disparate from the signature of the family it constitutes. The sequences were further mapped onto respective structures and compared with the entropic profile. The structures reveal that entropic scores were able to reveal the inherent structural bias of these proteins with quantitative precision, otherwise unseen from other analysis. Subsequently, the betweenness centrality scoring of each residue from the structure network models was resorted to explore the changes in dependencies on residue owing to structural disorder. CONCLUSION: These observations help to obtain the mechanistic changes resulting from the structural orchestration of protein structures. Finally, the hydropathy indexes were obtained to validate the sequence space observations using Shannon entropy and in-turn establishing the compatibility.


Assuntos
Entropia , Evolução Molecular , Proteínas Intrinsicamente Desordenadas/química , Neoplasias/metabolismo , Animais , Humanos , Interações Hidrofóbicas e Hidrofílicas
13.
Biochemistry ; 58(8): 1109-1119, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30694039

RESUMO

In this study, we have designed and synthesized a new hybrid ligand (SCG) that can selectively detect cysteine in the free and protein-bound states within minutes at the subnanomolar level. Photoinduced electron transfer was responsible for the visible color change as well as a large increase in steady state fluorescence. This detection was validated by using multiple model protein systems with differing cysteine environments and spatial arrangements. SCG was able to monitor the early events of the folding/aggregation kinetics of α-synuclein, a protein involved in the pathology of Parkinson's disease. The early events consisted of conformational fluctuations between different forms of the protein and oligomer formation. SCG was found to be effective in detecting early isomers of α-syn in vitro and in live cell environments.


Assuntos
Proliferação de Células , Cisteína/química , Corantes Fluorescentes/química , Neuroblastoma/patologia , Multimerização Proteica , Bibliotecas de Moléculas Pequenas/química , alfa-Sinucleína/química , Humanos , Neuroblastoma/metabolismo , Células Tumorais Cultivadas , alfa-Sinucleína/metabolismo
14.
Anal Bioanal Chem ; 411(6): 1143-1157, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30627799

RESUMO

A novel rhodamine-tryptamine conjugate-based fluorescent and chromogenic chemosensor (RTS) for detection of Hg2+ present in water was reported. After gradual addition of Hg2+ in aqueous methanol solution of RTS, a strong orange fluorescence and deep-pink coloration were observed. The probe showed high selectivity towards Hg2+ compared to other competitive metal ions. The 1:1 binding stoichiometry between RTS and Hg2+ was established by Job's plot analysis and mass spectroscopy. Initial studies showed that the synthesized probe RTS possessed fair non-toxicity and effectively passed through cell walls of model cell systems, viz., human neuroblastoma (SHSY5Y) cells and cervical cells (HeLa) to detect intercellular Hg2+ ions, signifying its utility in biological system. The limit of detection (LOD) was found to be 2.1 nM or 0.42 ppb by fluorescence titration. Additionally, the potential relevance of synthesized chemosensor for detecting Hg2+ ions in environmental water samples has been demonstrated. Graphical abstract ᅟ.


Assuntos
Corantes Fluorescentes/química , Mercúrio/análise , Imagem Óptica/métodos , Rodaminas/química , Triptaminas/química , Linhagem Celular Tumoral , Monitoramento Ambiental/métodos , Humanos , Limite de Detecção , Microscopia Confocal/métodos , Espectrometria de Fluorescência/métodos , Poluentes Químicos da Água/análise
15.
ACS Chem Neurosci ; 10(1): 573-587, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30296047

RESUMO

A water-soluble meso-carboxy aryl substituted [18] heteroannulene (porphyrin) and its Zn-complex have been found to be viable in targeting α-Syn aggregation at all its key microevents, namely, primary nucleation, fibril elongation, and secondary nucleation, by converting the highly heterogeneous and cytotoxic aggresome into a homogeneous population of minimally toxic off-pathway oligomers, that remained unexplored until recently. With the EC50 and dissociation constants in the low micromolar range, these heteroannulenes induce a switch in the secondary structure of toxic prefibrillar on-pathway oligomers of α-Syn, converting them into minimally toxic nonseeding off-pathway oligomers. The inhibition of the aggregation and the reduction of toxicity have been studied in vitro as well as inside neuroblastoma cells.


Assuntos
Conformação Molecular/efeitos dos fármacos , Neurônios/metabolismo , Porfirinas/farmacologia , alfa-Sinucleína/metabolismo , Linhagem Celular Tumoral , Escherichia coli , Humanos , Neuroblastoma/metabolismo , alfa-Sinucleína/química
16.
ACS Omega ; 3(7): 7703-7714, 2018 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-30221238

RESUMO

Biomimetic synthesis of multifunctional fluorescent gold nanoclusters (Au NCs) is of great demand because of their ever-increasing applications. In this study, we have used self-assembled bovine serum albumin (BSA) amyloid-like nanofibers as the bioinspired scaffold for the synthesis of Au NCs. The amyloid fibril stabilized gold nanocluster (Fib-Au NC) has been found to have appreciable enhancement of fluorescence emission and a large 25 nm red shift in its emission maxima when compared to its monomeric protein counterpart (BSA-Au NC). The underlying mechanism accountable for the fluorescence behavior and its spectral shift has been thoroughly investigated by a combined use of spectroscopic and microscopic techniques. We have subsequently demonstrated the use of Fib-Au NCs for cysteine (Cys) sensing both in vitro and inside live cells. Additionally, cellular uptake and postpermeation effect of Fib-Au NCs have also been ascertained by detailed flow cytometry analysis, viability assay, and real-time apoptotic gene expression profiling.

17.
Sci Rep ; 8(1): 5481, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29615762

RESUMO

Aggregation of alpha synuclein has strong implications in Parkinson's disease. The heterogeneity of folding/aggregation landscape and transient nature of the early intermediates result in difficulty in developing a successful therapeutic intervention. Here we used fluorescence measurements at ensemble and single molecule resolution to study how the late and early events of alpha synuclein aggregation modulate each other. In-vitro aggregation data was complemented using measurements inside live neuroblastoma cells by employing a small molecule labeling technique. An inhibitor molecule (arginine), which delayed the late event of amyloidosis, was found to bind to the protein, shifting the early conformational fluctuations towards a compact state. In contrast, a facilitator of late aggregation (glutamate), was found to be excluded from the protein surface. The presence of glutamate was found to speed up the oligomer formation at the early stage. We found that the effects of the inhibitor and facilitator were additive and as a result they maintained a ratio at which they cancelled each other's influence on different stages of alpha synuclein aggregation.


Assuntos
Amiloide/química , Multimerização Proteica/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , alfa-Sinucleína/química , Arginina/farmacologia , Ácido Glutâmico/farmacologia , Células HeLa , Humanos , Cinética , Estrutura Secundária de Proteína
18.
Langmuir ; 33(43): 12120-12129, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-28985680

RESUMO

Fluorescent metal nanoclusters have generated considerable excitement in nanobiotechnology, particularly in the applications of biolabeling, targeted delivery, and biological sensing. The present work is an experimental and computational study that aims to understand the effects of protein environment on the synthesis and electronic properties of gold nanoclusters. MPT63, a drug target of Mycobacterium tuberculosis, was used as the template protein to synthesize, for the first time, gold nanoclusters at a low micromolar concentration of the protein. Two single cysteine mutants of MPT63, namely, MPT63Gly20Cys (mutant I) and MPT63Gly40Cys (mutant II) were employed for this study. The experimental results show that cysteine residues positioned in two different regions of the protein induce varying electronic states of the nanoclusters depending on the surrounding amino acids. A mixture of five-atom and eight-atom clusters was generated for each mutant, and the former was found to be predominant in both cases. Computational studies, including density functional theory (DFT), frontier molecular orbital (FMO), and natural bond orbital (NBO) calculations, validated the experimental observations. The as-prepared protein-stabilized nanoclusters were found to have applications in the imaging of live cells.

19.
J Phys Chem B ; 121(8): 1824-1834, 2017 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-28182432

RESUMO

KMP-11 is a small protein that is believed to control the overall bilayer pressure of the Leishmania parasite. Recent results have suggested that membrane binding and the presence of cholesterol affect the efficacy of Leishmanial infection, in which KMP-11 plays an important role. Nevertheless, there exists no systematic study of membrane interaction with KMP-11 either in the absence or presence of cholesterol. In this article, we investigated the interaction between KMP-11 and phospholipid membranes using an unsaturated (PC 18:1; 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)) and saturated (PC 12:0; 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC)) lipid as membrane mimics. Additionally, we studied the effect of cholesterol on the protein-membrane interaction. Steady-state as well as time-resolved fluorescence spectroscopy, isothermal titration calorimetry (ITC), and ζ-potential measurements were used for the determination of the binding constants for the wild-type (WT) and single-site tryptophan mutants. Single-site tryptophan mutants were designed to make sure that the tryptophan residues sample different surface exposures in different mutants. In the absence of cholesterol, the membrane-binding affinities of the partially exposed and buried tryptophan mutants (Y5W and Y48W, respectively) were found to be greater than those of the WT protein. In the presence of cholesterol, the binding constants of the WT and Y48W mutant were found to decrease with an increase in cholesterol concentration. This was in contrast to that in the Y5W and F77W mutants, in which the binding constants increased on adding cholesterol. The present study highlights the interplay among the conformational architecture of a protein, its interaction with the membrane, and membrane composition in modulating the survival of a Leishmania parasite inside host macrophages.


Assuntos
Colesterol/metabolismo , Leishmania/fisiologia , Leishmaniose/metabolismo , Fosfolipídeos/metabolismo , Proteínas de Protozoários/metabolismo , Triptofano/metabolismo , Interações Hospedeiro-Parasita , Humanos , Leishmania/química , Leishmania/genética , Leishmania/parasitologia , Leishmaniose/parasitologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Modelos Moleculares , Mutação Puntual , Ligação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Triptofano/química , Triptofano/genética
20.
J Cell Physiol ; 229(9): 1245-55, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24446217

RESUMO

Trehalose-6-phosphate phosphatase (TPP) catalyzes the final step in the biosynthesis of the anti-stress sugar trehalose. An 82 kDa TPP enzyme was isolated from Candida utilis with 61% yield and 43-fold purification. The protein sequence, determined by N-terminal sequencing and MALDI-TOF analysis, showed significant homology with known TPP sequences from related organisms. The full length gene sequence of TPP of C. utilis was identified using rapid amplification of cDNA ends-PCR reaction (RACE-PCR). The gene was cloned and expressed in Escherichia coli BL21. Recombinant TPP enzyme was isolated using affinity chromatography. CD spectroscopy and steady-state fluorescence revealed that the structural and conformational aspects were identical in both native and recombinant forms. The biochemical properties of the two forms were also similar. Km was determined to be ~0.8 mM. Optimum temperature and pH were found to be 30 °C and 8.5, respectively. Activity was dependent on the presence of divalent cations and inhibited by metal chelators. Methylation-mediated regulation of TPP enzyme and its effect on the overall survival of the organism under stress were investigated. The results indicated that enhancement of TPP activity by methylation at the Cysteine residues increased resistance of Candida cells against thermal stress. This work involves extensive investigations toward understanding the physico-chemical properties of the first TPP enzyme from any yeast strain. The mechanism by which methylation regulates its activity has also been studied. A correlation between regulation of trehalose synthesis and survivability of the organism under thermal stress was established.


Assuntos
Candida/enzimologia , Proteínas Fúngicas/metabolismo , Resposta ao Choque Térmico , Monoéster Fosfórico Hidrolases/metabolismo , Trealose/biossíntese , Sequência de Aminoácidos , Candida/genética , Quelantes/farmacologia , Cromatografia de Afinidade , Dicroísmo Circular , Clonagem Molecular , Inibidores Enzimáticos/farmacologia , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Concentração de Íons de Hidrogênio , Cinética , Metilação , Dados de Sequência Molecular , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/isolamento & purificação , Conformação Proteica , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/metabolismo , Espectrometria de Fluorescência , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA