Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cell Mol Med ; 28(11): e18389, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38864691

RESUMO

Chemotherapy resistance remains a significant challenge in treating ovarian cancer effectively. This study addresses this issue by utilizing a dual drug-loaded nanomicelle system comprising albendazole (ABZ) and paclitaxel (PTX), encapsulated in a novel carrier matrix of D-tocopheryl polyethylene glycol 1000 succinate vitamin E (TPGS), soluplus and folic acid. Our objective was to develop and optimize this nanoparticulate delivery system using solvent evaporation techniques to enhance the therapeutic efficacy against ovarian cancer. The formulation process involved pre-formulation, formulation, optimization, and comprehensive characterization of the micelles. Optimization was conducted through a 32 factorial design, focusing on the effects of polymer ratios on particle size, zeta potential, polydispersity index (PDI) and entrapment efficiency (%EE). The optimal formulation demonstrated improved dilution stability, as indicated by a critical micelle concentration (CMC) of 0.0015 mg/mL for the TPGS-folic acid conjugate (TPGS-FOL). Extensive characterization included differential scanning calorimetry (DSC), nuclear magnetic resonance (NMR), and Fourier-transform infrared spectroscopy (FTIR). The release profile exhibited an initial burst followed by sustained release over 90 h. The cytotoxic potential of the formulated micelles was superior to that of the drugs alone, as assessed by MTT assays on SKOV3 ovarian cell lines. Additionally, in vivo studies confirmed the presence of both drugs in plasma and tumour tissues, suggesting effective targeting and penetration. In conclusion, the developed TPGS-Fol-based nanomicelles for co-delivering ABZ and PTX show promising results in overcoming drug resistance, enhancing solubility, sustaining drug release, and improving therapeutic outcomes in ovarian cancer treatment.


Assuntos
Albendazol , Micelas , Neoplasias Ovarianas , Paclitaxel , Feminino , Paclitaxel/farmacologia , Paclitaxel/administração & dosagem , Paclitaxel/uso terapêutico , Paclitaxel/química , Albendazol/química , Albendazol/farmacologia , Albendazol/administração & dosagem , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Humanos , Animais , Linhagem Celular Tumoral , Portadores de Fármacos/química , Polietilenoglicóis/química , Vitamina E/química , Ácido Fólico/química , Camundongos , Liberação Controlada de Fármacos , Tamanho da Partícula , Polivinil/química , Polímeros/química , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Chem Biodivers ; 21(7): e202400015, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38705852

RESUMO

More women die of breast cancer than of any other malignancy. The resistance and toxicity of traditional hormone therapy created an urgent need for potential molecules for treating breast cancer effectively. Novel biphenyl-substituted pyrazole chalcones linked to a pyrrolidine ring were designed by using a hybridization approach. The hybrids were assessed against MCF-7 and MDA-MB-231 cells by NRU assay. Among them, 8 k, 8 d, 8 m, 8 h, and 8 f showed significantly potent IC50 values: 0.17, 5.48, 8.13, 20.51, and 23.61 µM) respectively, on MCF-7 cells compared to the positive control Raloxifene and Tamoxifen. Furthermore, most active compound 8 k [3-(3-(4-fluorophenyl)-1-phenyl-1H-pyrazol-4-yl)-1-(2-(2-(pyrrolidin-1-yl)-ethoxy)-phenyl)-chalcone] showed cell death induced through apoptosis, cell cycle arrest at the G2/M phase, and demonstrated decrease of ER-α protein in western blotting study. Docking studies of 8 k and 8 d established adequate interactions with estrogen receptor-α as required for SERM binding. The active hybrids exhibited good pharmacokinetic properties for oral bioavailability and drug-likeness. Whereas, RMSD, RMSF, and Rg values from Molecular dynamics studies stipulated stability of the complex formed between compound 8 k and receptor. All of these findings strongly indicate the antiproliferative potential of pyrazole-chalcone hybrids for the treatment of breast cancer.


Assuntos
Antineoplásicos , Apoptose , Neoplasias da Mama , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Pirazóis , Humanos , Pirazóis/química , Pirazóis/farmacologia , Pirazóis/síntese química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Feminino , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Apoptose/efeitos dos fármacos , Estrutura Molecular , Chalconas/química , Chalconas/farmacologia , Chalconas/síntese química , Simulação de Acoplamento Molecular , Chalcona/química , Chalcona/farmacologia , Linhagem Celular Tumoral , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/antagonistas & inibidores , Relação Dose-Resposta a Droga , Animais , Ratos
3.
J Biomol Struct Dyn ; : 1-16, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38344942

RESUMO

In the current work, a new series of benzo[b][1, 4] diazepines (A-1 to C-4) was synthesized and screened against three different human cancer cell lines, HepG2 (hepatocellular carcinoma), HeLa (cervical cancer) and MCF-7 (breast cancer), by employing MTT (MTT 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assay. The outcomes of in vitro screening revealed that all the compounds exhibited momentous anticancer activity, most notably against the MCF-7 cell line by B1-4 compounds. Further, network pharmacology, UALCAN analysis, molecular docking, molecular dynamics (MD) simulations and density functional theory calculations were conducted to explore expression analysis, pharmacokinetics, toxicity profiles and binding interactions of the B1-4 compounds. By UALCAN, we explored the expression analysis of CDK-2 in 19 cancers. Through UALCAN, Pan-cancer analysis revealed that the expression of CDK-2 in 19 cancers was statistically significant. Among the 19 cancers, the CDK-2 expression was significantly upregulated in breast cancer (BRCA), cervical cancer (CESC) and lung carcinoma (LUSC) than normal tissues. Enzyme-docking examination revealed that B1-4 compounds exhibited significant binding affinity against the CDK-2 (PDB ID: 5IEV) drug target protein. Furthermore, MD simulations supported the docking results, which confirmed that the ligand + protein complex was in a stable conformation throughout the simulation time of 100 nanoseconds. Therefore, the present study demonstrates the potential of these benzo [b][1,4] diazepines as promising drug candidates against cancer.Communicated by Ramaswamy H. Sarma.


A new series of benzodiazepine molecules were designed and synthesized as CDK-2 inhibitors.In vitro anticancer potential against HepG2, HeLa and MCF-7 cancer cells were assessed.Network pharmacology; expression analysis; in silico docking; molecular dynamics simulation; molecular mechanics­generalized Born and surface area; and absorption, distribution, metabolism, excretion and toxicity studies were carried out.This study overall revealed the anticancer activity of benzodiazepines by integrating network pharmacology, molecular modeling and in vitro experiments.

4.
J Biomol Struct Dyn ; : 1-10, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38006310

RESUMO

Hormone-related breast cancer is mostly caused by interactions with estrogen receptor alpha (ER-α), which functions as a transcription factor to control the transcription of numerous genes. Flavones are considered a good substrate for the estrogen receptor. Substitution of the N-heterocyclic ring on the flavon structure may potentiate its anticancer effect. A series of flavon derivatives with an N-heteroaryl ring at the 4' position of the B ring of flavon were designed, prepared and evaluated for in vitro breast cancer activity. Binding interactions of the PzFL, PzF, PiFL, PiF and IFL compounds with ER-α were studied by molecular docking. Molecular dynamics simulation studies were carried out in order to determine the stability and convergence of protein-ligand complexes. The compounds were produced by cyclizing chalcones and chalcones were produced by Claisen-Schmidt condensation of substituted aldehydes and 2-hydroxy acetophenone. Breast cancer activity was evaluated by the MTT assay on MCF-7 cell lines. Also, compounds were studied for their estrogen receptor binding potential on the same cell lines. Molecular docking of compounds showed a good docking score. The molecular dynamics of these compounds expressed stable root mean square deviation, stable radius of gyration and low binding energy, suggesting that ligand bound to protein is quite stable in the complex. MTT assay on MCF-7 cell lines reported PzF and IFL were the most active compounds with lower IC50 values. ER-α binding assay of these compounds revealed the presence of binding interactions with receptors. This study offers a viable reference point for the design of flavon-incorporated N-heterocyclic ring derivatives as breast cancer compounds.Communicated by Ramaswamy H. Sarma.

5.
Chem Biodivers ; 20(11): e202301081, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37793119

RESUMO

INTRODUCTION: Curcumin, an anticancer natural compound with multiple pharmacological activities, has a weak pharmacokinetic and instability due to diketone moiety. Curcumin's stability challenges can be overcome by removing the diketone moiety and shortening the 7-carbon chain, resulting in mono-carbonyl analogs. Cancer proliferation is caused by the activation of Epidermal Growth Factor (EGFR) pathways. Current available EGFR inhibitors have an issue of resistance. AIM: Thus, we aimed to design new mono-carbonyl curcumin derivatives and analyse their drug likeness properties. Further, to investigate them on three distinct crystal structures, namely two wild-type and L858R/T790M/C797S mutant generations for EGFR inhibitory activity. METHOD: Ten New Molecular Entities (NME's) were designed using literature survey. These molecules were subjected to comparative molecular docking, on the EGFR crystal structures viz. wild-type (PDB: 1M17 and 4I23) and L858R/T790M/C797S mutant (PDB: 6LUD) using Schrodinger software. The molecules were also tested for Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) properties. The docked complex of the hit molecule was studied for molecular simulation. RESULT AND DISCUSSION: In molecular docking studies, NMEs 1, 2, and 3 were found to have good binding affinity with 1st , 2nd , and 3rd generation EGFR crystal structures and a greater dock score than standard curcumin. All molecules have shown a good ADMET profile. Since L858R/T790M/C797S is currently being explored more, we decided to take the best molecule, NME 3, for molecular dynamics with 6LUD, and the results were compared with those of the co-crystallized ligand S4 (Osimertinib). It was found that the Relative mean square standard deviation (RMSD) (1.8 Å), Relative mean standard Fluctuation (RMSF) (1.45 Å) and radius of gyration (4.87 Å) values of NME 3 were much lower than those of reference S4. All these confirm that our designed NME 3 is more stable than reference S4. CONCLUSION: NME 1 and NME 2 have shown better binding against wild type of EGFR. NME 3 have shown comparable binding and more stability as compared to Osimertinib against L858R/T790M/C797S mutated protein structure. The hit compound can be further explored for its Molecular mechanics with generalised Born and surface area solvation (MM-GBSA) and discrete Fourier transform (DFT) studies to find out the energy and atomic level study. In the future, this molecule could be taken for wet lab studies and can be tested for mutated EGFR inhibitory activity.


Assuntos
Curcumina , Neoplasias Pulmonares , Humanos , Simulação de Acoplamento Molecular , Receptores ErbB/metabolismo , Neoplasias Pulmonares/metabolismo , Curcumina/farmacologia , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Resistencia a Medicamentos Antineoplásicos
6.
J Biomol Struct Dyn ; : 1-14, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37534448

RESUMO

According to worldwide health data, cancer, and inflammatory illnesses are on the rise and are among the most common causes of death. Across the world, these types of health problems are now considered top priorities for government health organizations. Hence, this study aimed to investigate medicinal plants' potential for treating cancer and inflammatory disorders. This network pharmacology analysis aims to learn more about the potential targets and mechanisms of action for the bioactive ingredients in Sauropus androgynus (L.) Merr L. The compound-target network and protein-protein interaction analysis were built using the STRING database. Using Network Analyst, Gene Ontology, and Kyoto Encyclopaedia of Genes and Genomes, pathway enrichment was performed on the hub genes. 1-hexadecanol was shown to inhibit drug-metabolizing enzymes in a pharmacokinetic investigation. Those samples of 1-hexadecanol were found to be 1-hexadecanol (BBB 0.783), GI High, Pgp Substrate Yes, CYP2C19 Inhibitor Yes, CYP2D6 Yes, and HI -89.803. The intermolecular binding energies for 1-hexadecanol (4-DRI, -8.2 kcal/mol) are evaluated. These results from a study on S. androgynus used molecular docking and network pharmacology to gain insight into the prime target genes and potential mechanisms identified for AKT1, mTOR, AR, PPID, FKBP5, and NR3C1. The PI3K-Akt signalling pathway has become an important regulatory node in various pathological processes requiring coordinated actions. Stability and favourable conformations have been resolved by considering nonbonding interactions such as electrostatic and hydrogen bonds in MD simulations of the perfect molecules using the Desmond package. Thus, using an appropriate platform of network pharmacology, molecular docking, and in vitro experiments, this study provides for the first time a clearer knowledge of the anti-cancer and anti-inflammatory molecular bioactivities of S. androgynus. Further in vitro and in vivo confirmations are strongly needed to determine the efficacy and therapeutic effects of 1-hexadecanol in the biological process.Communicated by Ramaswamy H. Sarma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA