Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(11): e0288620, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38015853

RESUMO

L-asparaginase (L-ASNase) is a versatile anticancer and acrylamide reduction enzyme predominantly used in medical and food industries. However, the high specificity of L-asparaginase formulations for glutamine, low thermostability, and blood clearance are the major disadvantages. Present study describes production, characterization, and applications of glutaminase free extracellular L-asparaginase from indigenous Bacillus halotolerans ASN9 isolated from soil sample. L-asparaginase production was optimized in M9 medium (containing 0.2% sucrose and 1% L-asparagine) that yielded maximum L-ASNase with a specific activity of 256 U mg-1 at pH 6 and 37°C. L-asparaginase was purified through acetone precipitation and Sephadex G-100 column, yielding 48.9 and 24% recovery, respectively. Enzyme kinetics revealed a Vmax of 466 mM min-1 and Km of 0.097 mM. Purified L-ASNase showed no activity against glutamine. The purified glutaminase free L-ASNase has a molecular mass of 60 kDa and an optimum specific activity of 3083 U mg-1 at pH 7 and 37°C. The enzyme retains its activity and stability over a wide range of pH and temperature, in the presence of selected protein inhibitors (SDS, ß-mercaptoethanol), CoCl2, KCl, and NaCl. The enzyme also exhibited antioxidant activity against DPPH radical (IC50 value 70.7 µg mL-1) and anticancer activity against U87 human malignant glioma (IC50 55 µg mL-1) and Huh7 human hepatocellular carcinoma (IC50 37 µg mL-1) cell lines. Normal human embryonic kidney cells (HEK293) had greater than 80% cell viability with purified L-ASNase indicating its least cytotoxicity against normal cells. The present work identified potent glutaminase free L-ASNase from B. halotolerans ASN9 that performs well in a wide range of environmental conditions indicating its suitability for various commercial applications.


Assuntos
Antineoplásicos , Bacillus , Humanos , Asparaginase/metabolismo , Glutamina/metabolismo , Células HEK293 , Bacillus/metabolismo , Antineoplásicos/química
2.
Appl Environ Microbiol ; 81(8): 2781-96, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25681179

RESUMO

Oxidation of methionine leads to the formation of the S and R diastereomers of methionine sulfoxide (MetO), which can be reversed by the actions of two structurally unrelated classes of methionine sulfoxide reductase (Msr), MsrA and MsrB, respectively. Although MsrAs have long been demonstrated in numerous bacteria, their physiological and biochemical functions remain largely unknown in Actinomycetes. Here, we report that a Corynebacterium glutamicum methionine sulfoxide reductase A (CgMsrA) that belongs to the 3-Cys family of MsrAs plays important roles in oxidative stress resistance. Deletion of the msrA gene in C. glutamicum resulted in decrease of cell viability, increase of ROS production, and increase of protein carbonylation levels under various stress conditions. The physiological roles of CgMsrA in resistance to oxidative stresses were corroborated by its induced expression under various stresses, regulated directly by the stress-responsive extracytoplasmic-function (ECF) sigma factor SigH. Activity assays performed with various regeneration pathways showed that CgMsrA can reduce MetO via both the thioredoxin/thioredoxin reductase (Trx/TrxR) and mycoredoxin 1/mycothione reductase/mycothiol (Mrx1/Mtr/MSH) pathways. Site-directed mutagenesis confirmed that Cys56 is the peroxidatic cysteine that is oxidized to sulfenic acid, while Cys204 and Cys213 are the resolving Cys residues that form an intramolecular disulfide bond. Mrx1 reduces the sulfenic acid intermediate via the formation of an S-mycothiolated MsrA intermediate (MsrA-SSM) which is then recycled by mycoredoxin and the second molecule of mycothiol, similarly to the glutathione/glutaredoxin/glutathione reductase (GSH/Grx/GR) system. However, Trx reduces the Cys204-Cys213 disulfide bond in CgMsrA produced during MetO reduction via the formation of a transient intermolecular disulfide bond between Trx and CgMsrA. While both the Trx/TrxR and Mrx1/Mtr/MSH pathways are operative in reducing CgMsrA under stress conditions in vivo, the Trx/TrxR pathway alone is sufficient to reduce CgMsrA under normal conditions. Based on these results, a catalytic model for the reduction of CgMsrA by Mrx1 and Trx is proposed.


Assuntos
Proteínas de Bactérias/genética , Corynebacterium glutamicum/fisiologia , Metionina Sulfóxido Redutases/genética , Estresse Oxidativo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/genética , Metionina Sulfóxido Redutases/química , Metionina Sulfóxido Redutases/metabolismo , Dados de Sequência Molecular , Alinhamento de Sequência , Tiorredoxinas/metabolismo
3.
Biotechnol Lett ; 36(7): 1453-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24737070

RESUMO

Over-expression of the gene, mshA, coding for mycothiol glycosyl transferase improved the robustness of Corynebacterium glutamicum to various stresses. Intracellular mycothiol (MSH) content was increased by 114 % in WT(pXMJ19-mshA) compared to WT(pXMJ19). Survival rates increased by 44, 39, 90, 77, 131, 87, 52, 47, 57, 85 and 33 % as compared to WT(pXMJ19) under stress by H2O2 (40 mM), methylglyoxal (5.8 mM), erythromycin (0.08 mg ml(-1)), streptomycin (0.005 mg ml(-1)), Cd(2+) (0.01 mM), Mn(2+) (2 mM), formic acid (0.05 %), acetic acid (0.15 %), levulinic acid (0.25 %), furfural (7.2 mM), and ethanol (10 % v/v), respectively. Increased MSH content also decreased the concentration of reactive oxygen species in the presence of the above stresses. Our results may open a new avenue for enhancing robustness of industrial bacteria for production of commodity chemicals.


Assuntos
Corynebacterium glutamicum/fisiologia , Cisteína/metabolismo , Expressão Gênica , Glicopeptídeos/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Inositol/metabolismo , Estresse Fisiológico , Corynebacterium glutamicum/efeitos dos fármacos , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Viabilidade Microbiana/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA