Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
mBio ; 11(2)2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32184238

RESUMO

Human noroviruses (HuNoV) are a leading cause of viral gastroenteritis worldwide and a significant cause of morbidity and mortality in all age groups. The recent finding that HuNoV can be propagated in B cells and mucosa-derived intestinal epithelial organoids (IEOs) has transformed our ability to dissect the life cycle of noroviruses. Using transcriptome sequencing (RNA-Seq) of HuNoV-infected intestinal epithelial cells (IECs), we have found that replication of HuNoV in IECs results in interferon (IFN)-induced transcriptional responses and that HuNoV replication in IECs is sensitive to IFN. This contrasts with previous studies that suggested that the innate immune response may play no role in the restriction of HuNoV replication in immortalized cells. We demonstrated that inhibition of Janus kinase 1 (JAK1)/JAK2 enhanced HuNoV replication in IECs. Surprisingly, targeted inhibition of cellular RNA polymerase II-mediated transcription was not detrimental to HuNoV replication but instead enhanced replication to a greater degree than blocking of JAK signaling directly. Furthermore, we demonstrated for the first time that IECs generated from genetically modified intestinal organoids, engineered to be deficient in the interferon response, were more permissive to HuNoV infection. Taking the results together, our work revealed that IFN-induced transcriptional responses restrict HuNoV replication in IECs and demonstrated that inhibition of these responses mediated by modifications of the culture conditions can greatly enhance the robustness of the norovirus culture system.IMPORTANCE Noroviruses are a major cause of gastroenteritis worldwide, and yet the challenges associated with their growth in culture have greatly hampered the development of therapeutic approaches and have limited our understanding of the cellular pathways that control infection. Here, we show that human intestinal epithelial cells, which represent the first point of entry of human noroviruses into the host, limit virus replication by induction of innate responses. Furthermore, we show that modulating the ability of intestinal epithelial cells to induce transcriptional responses to HuNoV infection can significantly enhance human norovirus replication in culture. Collectively, our findings provide new insights into the biological pathways that control norovirus infection but also identify mechanisms that enhance the robustness of norovirus culture.


Assuntos
Células Epiteliais/virologia , Imunidade Inata , Intestinos/citologia , Norovirus/fisiologia , RNA Polimerase II/metabolismo , Replicação Viral , Linhagem Celular , Células Epiteliais/imunologia , Humanos , Interferon Tipo I/imunologia , Intestinos/virologia , Janus Quinases/metabolismo , RNA Polimerase II/genética , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Transcrição Gênica
2.
Nat Microbiol ; 4(2): 280-292, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30478287

RESUMO

Enteroviruses comprise a large group of mammalian pathogens that includes poliovirus. Pathology in humans ranges from sub-clinical to acute flaccid paralysis, myocarditis and meningitis. Until now, all of the enteroviral proteins were thought to derive from the proteolytic processing of a polyprotein encoded in a single open reading frame. Here we report that many enterovirus genomes also harbour an upstream open reading frame (uORF) that is subject to strong purifying selection. Using echovirus 7 and poliovirus 1, we confirmed the expression of uORF protein in infected cells. Through ribosome profiling (a technique for the global footprinting of translating ribosomes), we also demonstrated translation of the uORF in representative members of the predominant human enterovirus species, namely Enterovirus A, B and C. In differentiated human intestinal organoids, uORF protein-knockout echoviruses are attenuated compared to the wild-type at late stages of infection where membrane-associated uORF protein facilitates virus release. Thus, we have identified a previously unknown enterovirus protein that facilitates virus growth in gut epithelial cells-the site of initial viral invasion into susceptible hosts. These findings overturn the 50-year-old dogma that enteroviruses use a single-polyprotein gene expression strategy and have important implications for the understanding of enterovirus pathogenesis.


Assuntos
Infecções por Enterovirus/virologia , Enterovirus/genética , Enterovirus/patogenicidade , Mucosa Intestinal/virologia , Fases de Leitura Aberta/fisiologia , Proteínas Virais/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Enterovirus/classificação , Expressão Gênica , Técnicas de Inativação de Genes , Genoma Viral/genética , Humanos , Mutação , Fases de Leitura Aberta/genética , Organoides/virologia , Filogenia , Biossíntese de Proteínas , RNA Viral/genética , RNA Viral/metabolismo , Seleção Genética , Proteínas Virais/genética , Liberação de Vírus
3.
J Gen Virol ; 99(12): 1621-1632, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29683421

RESUMO

Until recently, our understanding of the cellular tropism of human norovirus (HuNoV), a major cause of viral gastroenteritis, has been limited. Immune cells and intestinal epithelial cells (IECs) have been proposed as targets of HuNoV replication in vivo, although the contribution of each to pathogenesis and transmission is unknown. Murine norovirus (MNV) is widely used as a surrogate model for HuNoV, as it replicates in cultured immune cells. The importance of the complete MNV immune cell tropism in vivo has not been determined. Recent work has linked replication in IECs to viral persistence in vivo. MNV provides a model to assess the relative contribution of each cell tropism to viral replication in immunocompetent native hosts. Here we exploited cell-specific microRNAs to control MNV replication, through insertion of microRNA target sequences into the MNV genome. We demonstrated the utility of this approach for MNV in vitro by selectively reducing replication in microglial cells, using microglial-specific miR-467c. We then showed that inserting a target sequence for the haematopoietic-specific miR-142-3p abrogated replication in a macrophage cell line. The presence of a target sequence for either miR-142-3p or IEC miR-215 significantly reduced viral secretion during the early stages of a persistent infection in immunocompetent mice, confirming that both cell types support viral replication in vivo. This study provides additional evidence that MNV shares the IEC tropism of HuNoVs in vivo, and now provides a model to dissect the contribution of replication in each cell type to viral pathogenesis and transmission in a native host.


Assuntos
Infecções por Caliciviridae/virologia , Células Epiteliais/virologia , Macrófagos/virologia , Norovirus/crescimento & desenvolvimento , Doenças dos Roedores/virologia , Tropismo Viral , Replicação Viral , Animais , Antivirais/metabolismo , Linhagem Celular , Transmissão de Doença Infecciosa , Camundongos , MicroRNAs/metabolismo
4.
J Virol ; 89(2): 1218-29, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25392209

RESUMO

UNLABELLED: All members of the Caliciviridae family of viruses produce a subgenomic RNA during infection. The subgenomic RNA typically encodes only the major and minor capsid proteins, but in murine norovirus (MNV), the subgenomic RNA also encodes the VF1 protein, which functions to suppress host innate immune responses. To date, the mechanism of norovirus subgenomic RNA synthesis has not been characterized. We have previously described the presence of an evolutionarily conserved RNA stem-loop structure on the negative-sense RNA, the complementary sequence of which codes for the viral RNA-dependent RNA polymerase (NS7). The conserved stem-loop is positioned 6 nucleotides 3' of the start site of the subgenomic RNA in all caliciviruses. We demonstrate that the conserved stem-loop is essential for MNV viability. Mutant MNV RNAs with substitutions in the stem-loop replicated poorly until they accumulated mutations that revert to restore the stem-loop sequence and/or structure. The stem-loop sequence functions in a noncoding context, as it was possible to restore the replication of an MNV mutant by introducing an additional copy of the stem-loop between the NS7- and VP1-coding regions. Finally, in vitro biochemical data suggest that the stem-loop sequence is sufficient for the initiation of viral RNA synthesis by the recombinant MNV RNA-dependent RNA polymerase, confirming that the stem-loop forms the core of the norovirus subgenomic promoter. IMPORTANCE: Noroviruses are a significant cause of viral gastroenteritis, and it is important to understand the mechanism of norovirus RNA synthesis. Here we describe the identification of an RNA stem-loop structure that functions as the core of the norovirus subgenomic RNA promoter in cells and in vitro. This work provides new insights into the molecular mechanisms of norovirus RNA synthesis and the sequences that determine the recognition of viral RNA by the RNA-dependent RNA polymerase.


Assuntos
Norovirus/genética , Norovirus/fisiologia , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas , RNA Viral/biossíntese , RNA Viral/química , Replicação Viral , Animais , Linhagem Celular , Macrófagos/virologia , Camundongos , Viabilidade Microbiana , RNA Polimerase Dependente de RNA/metabolismo
5.
J Virol ; 86(22): 11977-90, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22933270

RESUMO

Human noroviruses are one of the major causes of acute gastroenteritis in the developed world, yet our understanding of their molecular mechanisms of genome translation and replication lags behind that for many RNA viruses. Due to the nonculturable nature of human noroviruses, many related members of the Caliciviridae family of small RNA viruses are often used as model systems to dissect the finer details of the norovirus life cycle. Murine norovirus (MNV) has provided one such system with which to study the basic mechanisms of norovirus translation and replication in cell culture. In this report we describe the use of riboproteomics to identify host factors that interact with the extremities of the MNV genome. This network of RNA-protein interactions contains many well-characterized host factors, including PTB, La, and DDX3, which have been shown to play a role in the life cycle of other RNA viruses. By using RNA coimmunoprecipitation, we confirmed that a number of the factors identified using riboproteomics are associated with the viral RNA during virus replication in cell culture. We further demonstrated that RNA inhibition-mediated knockdown of the intracellular levels of a number of these factors inhibits or slows norovirus replication in cell culture, allowing identification of new intracellular targets for this important group of pathogens.


Assuntos
Norovirus/genética , Norovirus/fisiologia , RNA Viral/genética , Animais , Linhagem Celular , RNA Helicases DEAD-box , Humanos , Imunoprecipitação , Macrófagos/metabolismo , Macrófagos/virologia , Espectrometria de Massas/métodos , Camundongos , Microscopia de Fluorescência/métodos , Conformação de Ácido Nucleico , Proteína de Ligação a Regiões Ricas em Polipirimidinas/química , Mapeamento de Interação de Proteínas , Proteômica/métodos , RNA Helicases/química , Proteínas de Ligação a RNA/química , Coelhos , Reticulócitos/citologia
6.
J Gen Virol ; 93(Pt 7): 1432-1441, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22495235

RESUMO

Human noroviruses (HuNoV) are a major cause of viral gastroenteritis worldwide, yet, due to the inability to propagate HuNoV in cell culture, murine norovirus (MNV) is typically used as a surrogate to study norovirus biology. MNV-3 represents an attractive strain to study norovirus infections in vivo because it establishes persistence in wild-type mice, yet causes symptoms resembling gastroenteritis in immune-compromised STAT1(-/-) mice. The lack of reverse-genetics approaches to recover genetically defined MNV-3 has limited further studies on the identification of viral sequences that contribute to persistence. Here we report the establishment of a combined DNA-based reverse-genetics and mouse-model system to study persistent MNV-3 infections in wild-type (C57BL/6) mice. Viral RNA and infectious virus were detected in faeces for at least 56 days after inoculation. Strikingly, the highest concentrations of viral RNA during persistence were detected in the caecum and colon, suggesting that viral persistence is maintained in these tissues. Possible adaptive changes arising during persistence in vivo appeared to accumulate in the minor capsid protein (VP2) and the viral polymerase (NS7), in contrast with adaptive mutations selected during cell-culture passages in RAW264.7 cells that appeared in the major capsid protein (VP1) and non-structural protein NS4. This system provides an attractive model that can be readily used to identify viral sequences that contribute to persistence in an immunocompetent host and to more acute infection in an immunocompromised host, providing new insights into the biology of norovirus infections.


Assuntos
Infecções por Caliciviridae/virologia , Ceco/virologia , Colo/virologia , Gastroenterite/virologia , Norovirus/genética , Norovirus/patogenicidade , Genética Reversa/métodos , Adaptação Biológica , Animais , Infecções por Caliciviridae/patologia , Linhagem Celular , Análise Mutacional de DNA , Modelos Animais de Doenças , Fezes/virologia , Gastroenterite/patologia , Macrófagos/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Norovirus/crescimento & desenvolvimento , RNA Viral/genética , Análise de Sequência de DNA , Proteínas Virais/genética
7.
EMBO J ; 26(17): 3936-44, 2007 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-17690690

RESUMO

The ErbB3-binding protein 1 (Ebp1) is an important regulator of transcription, affecting eukaryotic cell growth, proliferation, differentiation and survival. Ebp1 can also affect translation and cooperates with the polypyrimidine tract-binding protein (PTB) to stimulate the activity of the internal ribosome entry site (IRES) of foot-and-mouth disease virus (FMDV). We report here the crystal structure of murine Ebp1 (p48 isoform), providing the first glimpse of the architecture of this versatile regulator. The structure reveals a core domain that is homologous to methionine aminopeptidases, coupled to a C-terminal extension that contains important motifs for binding proteins and RNA. It sheds new light on the conformational differences between the p42 and p48 isoforms of Ebp1, the disposition of the key protein-interacting motif ((354)LKALL(358)) and the RNA-binding activity of Ebp1. We show that the primary RNA-binding site is formed by a Lys-rich motif in the C terminus and mediates the interaction with the FMDV IRES. We also demonstrate a specific functional requirement for Ebp1 in FMDV IRES-directed translation that is independent of a direct interaction with PTB.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Modelos Moleculares , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Aminopeptidases/química , Sítios de Ligação , Vírus da Febre Aftosa/genética , Lisina/química , Metionil Aminopeptidases , Biossíntese de Proteínas , Conformação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/fisiologia , RNA Interferente Pequeno/genética , RNA Viral/química , Ativação Transcricional
8.
J Gen Virol ; 88(Pt 8): 2091-2100, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17622609

RESUMO

Despite the significant disease burden caused by human norovirus infection, an efficient tissue-culture system for these viruses remains elusive. Murine norovirus (MNV) is an ideal surrogate for the study of norovirus biology, as the virus replicates efficiently in tissue culture and a low-cost animal model is readily available. In this report, a reverse-genetics system for MNV is described, using a fowlpox virus (FWPV) recombinant expressing T7 RNA polymerase to recover genetically defined MNV in tissue culture for the first time. These studies demonstrated that approaches that have proved successful for other members of the family Caliciviridae failed to lead to recovery of MNV. This was due to our observation that vaccinia virus infection had a negative effect on MNV replication. In contrast, FWPV infection had no deleterious effect and allowed the recovery of infectious MNV from cells previously transfected with MNV cDNA constructs. These studies also indicated that the nature of the 3'-terminal nucleotide is critical for efficient virus recovery and that inclusion of a hepatitis delta virus ribozyme at the 3' end can increase the efficiency with which virus is recovered. This system now allows the recovery of genetically defined noroviruses and will facilitate the analysis of the effects of genetic variation on norovirus pathogenesis.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Vírus da Varíola das Aves Domésticas/metabolismo , Vetores Genéticos/metabolismo , Norovirus/fisiologia , Vírus Reordenados/metabolismo , Proteínas Virais/fisiologia , Região 3'-Flanqueadora/fisiologia , Animais , Bacteriófago T7/enzimologia , Linhagem Celular , Cricetinae , DNA Complementar/genética , RNA Polimerases Dirigidas por DNA/genética , Vírus da Varíola das Aves Domésticas/genética , Vírus Delta da Hepatite/enzimologia , Macrófagos/virologia , Camundongos , RNA Catalítico/fisiologia , Especificidade da Espécie , Transfecção , Replicação Viral
9.
J Gen Virol ; 87(Pt 11): 3339-3347, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17030868

RESUMO

The interaction of host-cell nucleic acid-binding proteins with the genomes of positive-stranded RNA viruses is known to play a role in the translation and replication of many viruses. To date, however, the characterization of similar interactions with the genomes of members of the family Caliciviridae has been limited to in vitro binding analysis. In this study, Feline calicivirus (FCV) has been used as a model system to identify and characterize the role of host-cell factors that interact with the viral RNA. It was demonstrated that polypyrimidine tract-binding protein (PTB) interacts specifically with the 5' sequences of the FCV genomic and subgenomic RNAs. Using RNA interference it was shown that PTB is required for efficient FCV replication in a temperature-dependent manner. siRNA-mediated knockdown of PTB resulted in a 15- to 100-fold reduction in virus titre, as well as a concomitant reduction in viral RNA and protein synthesis at 32 degrees C. In addition, virus-induced cytopathic effect was significantly delayed as a result of an siRNA-mediated reduction in PTB levels. A role for PTB in the calicivirus life cycle was more apparent at temperatures above and below 37 degrees C, fitting with the hypothesis that PTB functions as an RNA chaperone, potentially aiding the folding of RNA into functional structures. This is the first functional demonstration of a host-cell protein interacting with a calicivirus RNA.


Assuntos
Calicivirus Felino/fisiologia , Proteína de Ligação a Regiões Ricas em Polipirimidinas/fisiologia , Regiões 5' não Traduzidas/metabolismo , Animais , Linhagem Celular , Deleção de Genes , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Ligação Proteica , RNA Interferente Pequeno/genética , RNA Viral/metabolismo , Temperatura , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA