Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Cureus ; 16(2): e55043, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38550462

RESUMO

Phantom bladder pain, a rare condition following cystectomy, can pose a challenge to pain management providers. We present the case of a 43-year-old male who developed severe phantom bladder pain post-cystectomy. Despite multiple treatments, his symptoms persisted, significantly affecting his quality of life. Dorsal root ganglion stimulation (DRGS) was attempted after conventional therapies failed. The DRGS trial provided significant relief, leading to permanent implantation and a 90% reduction in pain. This case highlights DRGS as a potential treatment for phantom bladder pain, expanding its applications beyond traditional uses. Further research is needed to elucidate its mechanisms and broader applicability.

2.
Pharmaceutics ; 16(2)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38399262

RESUMO

Developing successful nanomedicine hinges on regulating nanoparticle surface interactions within biological systems, particularly in intravenous nanotherapeutics. We harnessed the surface interactions of gold nanoparticles (AuNPs) with serum proteins, incorporating a γ-globulin (γG) hard surface corona and chemically conjugating Doxorubicin to create an innovative hybrid anticancer nanobioconjugate, Dox-γG-AuNPs. γG (with an isoelectric point of ~7.2) enhances cellular uptake and exhibits pH-sensitive behaviour, favouring targeted cancer cell drug delivery. In cell line studies, Dox-γG-AuNPs demonstrated a 10-fold higher cytotoxic potency compared to equivalent doxorubicin concentrations, with drug release favoured at pH 5.5 due to the γ-globulin corona's inherent pH sensitivity. This bioinspired approach presents a novel strategy for designing hybrid anticancer therapeutics. Our study also explored the intricacies of the p53-mediated ROS pathway's role in regulating cell fate, including apoptosis and necrosis, in response to these treatments. The pathway's delicate balance of ROS emerged as a critical determinant, warranting further investigation to elucidate its mechanisms and implications. Overall, leveraging the robust γ-globulin protein corona on AuNPs enhances biostability in harsh serum conditions, augments anticancer potential within pH-sensitive environments, and opens promising avenues for bioinspired drug delivery and the design of novel anticancer hybrids with precise targeting capabilities.

4.
Res Sq ; 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37790538

RESUMO

Multivalent proteins undergo coupled segregative and associative phase transitions. Phase separation, a segregative transition, is driven by macromolecular solubility, and this leads to coexisting phases above system-specific saturation concentrations. Percolation is a continuous transition that is driven by multivalent associations among cohesive motifs. Contributions from percolation are highlighted by the formation of heterogeneous distributions of clusters in sub-saturated solutions, as was recently reported for Fused in sarcoma (FUS) and FET family proteins. Here, we show that clustering and phase separation are defined by a separation of length- and energy-scales. This is unmasked when glutamate is the primary solution anion. Glutamate is preferentially excluded from protein sites, and this enhances molecular associations. Differences between glutamate and chloride are manifest at ultra-low protein concentrations. These differences are amplified as concentrations increase, and they saturate as the micron-scale is approached. Therefore, condensate formation in supersaturated solutions and clustering in sub-saturated are governed by distinct energy and length scales. Glutamate, unlike chloride, is the dominant intracellular anion, and the separation of scales, which is masked in chloride, is unmasked in glutamate. Our work highlights how components of cellular milieus and sequence-encoded interactions contribute to amplifying distinct contributions from associative versus segregative phase transitions.

5.
Cancer Res ; 83(24): 4142-4160, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37801613

RESUMO

Prostate cancer remains the second leading cause of cancer death in men in Western cultures. A deeper understanding of the mechanisms by which prostate cancer cells divide to support tumor growth could help devise strategies to overcome treatment resistance and improve survival. Here, we identified that the mitotic AGC family protein kinase citron kinase (CIT) is a pivotal regulator of prostate cancer growth that mediates prostate cancer cell interphase progression. Increased CIT expression correlated with prostate cancer growth induction and aggressive prostate cancer progression, and CIT was overexpressed in prostate cancer compared with benign prostate tissue. CIT overexpression was controlled by an E2F2-Skp2-p27 signaling axis and conferred resistance to androgen-targeted treatment strategies. The effects of CIT relied entirely on its kinase activity. Conversely, CIT silencing inhibited the growth of cell lines and xenografts representing different stages of prostate cancer progression and treatment resistance but did not affect benign epithelial prostate cells or nonprostatic normal cells, indicating a potential therapeutic window for CIT inhibition. CIT kinase activity was identified as druggable and was potently inhibited by the multikinase inhibitor OTS-167, which decreased the proliferation of treatment-resistant prostate cancer cells and patient-derived organoids. Isolation of the in vivo CIT substrates identified proteins involved in diverse cellular functions ranging from proliferation to alternative splicing events that are enriched in treatment-resistant prostate cancer. These findings provide insights into the regulation of aggressive prostate cancer cell behavior by CIT and identify CIT as a functionally diverse and druggable driver of prostate cancer progression. SIGNIFICANCE: The poorly characterized protein kinase citron kinase is a therapeutic target in prostate cancer that drives tumor growth by regulating diverse substrates, which control several hallmarks of aggressive prostate cancer progression. See related commentary by Mishra et al., p. 4008.


Assuntos
Próstata , Neoplasias da Próstata , Proteínas Quinases , Humanos , Masculino , Linhagem Celular Tumoral , Proliferação de Células , Próstata/patologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Proteínas Quinases/metabolismo , Transdução de Sinais
6.
bioRxiv ; 2023 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-37609232

RESUMO

Multivalent proteins undergo coupled segregative and associative phase transitions. Phase separation, a segregative transition, is driven by macromolecular solubility, and this leads to coexisting phases above system-specific saturation concentrations. Percolation is a continuous transition that is driven by multivalent associations among cohesive motifs. Contributions from percolation are highlighted by the formation of heterogeneous distributions of clusters in sub-saturated solutions, as was recently reported for Fused in sarcoma (FUS) and FET family proteins. Here, we show that clustering and phase separation are defined by a separation of length- and energy-scales. This is unmasked when glutamate is the primary solution anion. Glutamate is preferentially excluded from protein sites, and this enhances molecular associations. Differences between glutamate and chloride are manifest at ultra-low protein concentrations. These differences are amplified as concentrations increase, and they saturate as the micron-scale is approached. Therefore, condensate formation in supersaturated solutions and clustering in sub-saturated are governed by distinct energy and length scales. Glutamate, unlike chloride, is the dominant intracellular anion, and the separation of scales, which is masked in chloride, is unmasked in glutamate. Our work highlights how components of cellular milieus and sequence-encoded interactions contribute to amplifying distinct contributions from associative versus segregative phase transitions.

7.
Cancer Res Commun ; 3(6): 1078-1092, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37377604

RESUMO

Triple-negative breast cancer (TNBC) has high relapse and metastasis rates and a high proportion of cancer stem-like cells (CSC), which possess self-renewal and tumor initiation capacity. MELK (maternal embryonic leucine zipper kinase), a protein kinase of the Snf1/AMPK kinase family, is known to promote CSC maintenance and malignant transformation. However, the role of MELK in TNBC metastasis is unknown; we sought to address this in the current study. We found that MELK mRNA levels were higher in TNBC tumors [8.11 (3.79-10.95)] than in HR+HER2- tumors [6.54 (2.90-9.26)]; P < 0.001]. In univariate analysis, patients with breast cancer with high-MELK-expressing tumors had worse overall survival (P < 0.001) and distant metastasis-free survival (P < 0.01) than patients with low-MELK-expressing tumors. In a multicovariate Cox regression model, high MELK expression was associated with shorter overall survival after adjusting for other baseline risk factors. MELK knockdown using siRNA or MELK inhibition using the MELK inhibitor MELK-In-17 significantly reduced invasiveness, reversed epithelial-to-mesenchymal transition, and reduced CSC self-renewal and maintenance in TNBC cells. Nude mice injected with CRISPR MELK-knockout MDA-MB-231 cells exhibited suppression of lung metastasis and improved overall survival compared with mice injected with control cells (P < 0.05). Furthermore, MELK-In-17 suppressed 4T1 tumor growth in syngeneic BALB/c mice (P < 0.001). Our findings indicate that MELK supports metastasis by promoting epithelial-to-mesenchymal transition and the CSC phenotype in TNBC. Significance: These findings indicate that MELK is a driver of aggressiveness and metastasis in TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/genética , Camundongos Nus , Zíper de Leucina , Proliferação de Células/fisiologia , Recidiva Local de Neoplasia , Proteínas Serina-Treonina Quinases/genética
8.
Cureus ; 15(3): e35759, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37025751

RESUMO

The number of joint replacement surgeries, especially knee replacement surgeries, is rising with the rising geriatric population. Chronic unremitting knee pain post-total knee replacement surgery is a common phenomenon. Usually, the pain responds to conservative measures, including physical therapy and medical management. In some patients, the pain post-knee replacement surgery can be refractory and unremitting. In such scenarios, peripheral nerve stimulation, or neuromodulation, can be an effective option.

9.
BMJ Case Rep ; 16(1)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36693701

RESUMO

Mandibular arteriovenous malformations (AVMs) are rare lesions which can present with life-threatening haemorrhage. Endovascular embolisation can be life saving for these patients. We discuss a patient of mandibular AVM, who initially presented with reports of massive oral bleeding. The lesion was only partially embolised via transarterial route, as the nidus could not be penetrated completely. In view of rebleeding within 72 hours from the same site, a second embolisation procedure was done via combined, transarterial and transvenous approaches. Coils and onyx were used as embolising agents. Complete embolisation was achieved via combined approach. No further bleeding episodes were seen at 1-year follow-up. Endovascular embolisation of mandibular AVMs can be technically challenging and, hence, a sound knowledge of the anatomy as well as the possible modification of technique is essential to achieve complete obliteration of the lesion and to maximise the benefit of embolisation and to avoid major radical surgery.


Assuntos
Embolização Terapêutica , Malformações Arteriovenosas Intracranianas , Humanos , Malformações Arteriovenosas Intracranianas/terapia , Embolização Terapêutica/métodos , Mandíbula/patologia , Hemorragia Bucal , Resultado do Tratamento
10.
Pain Pract ; 22(4): 432-439, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34845813

RESUMO

BACKGROUND: Spinal cord stimulation (SCS) continues to gain increasing popularity in the pain management field for the treatment of different painful conditions; however, to-date, the correlation between the SCS effectiveness and biological sex has not been fully established. We aimed to investigate the correlation between the biological sex and SCS outcomes. METHODS: Following Institutional Review Board approval, a retrospective cohort study was performed by collecting data for patients treated with SCS at a tertiary academic center between the years 2002 and 2019. Data was assessed with multivariable linear regression to investigate the association between biological sex and pain scores at baseline, 6-, and 12- months following SCS implantation. Propensity score matching (PSM) was performed based on a set of covariates including age, duration of pain, time since implant, BMI, opioid medications use, smoking, depression and history of alcohol, or substance abuse. RESULTS: Of the patients treated with SCS implants, 418 patients fit the inclusion and exclusion criteria, out of which the majority were females (272, 65%). The pre-matching data reported a significant difference in history of diabetes and depression and was also significant for greater opioid use in male patients at baseline, 6-, and 12-months post-SCS implant. Propensity score matching (PSM) was performed based on the above mentioned covariant. After matching, no statistical difference was found among the variables, in both groups. Furthermore, after matching no significant differences in the pain scores at baseline, 6-, and 12-months post-SCS implant were observed. CONCLUSION: No biological sex-based differences in the analgesic response to SCS therapy was detected at 6- and 12-months post-SCS implant between groups with similar demographics, biomedical, and psychological values.


Assuntos
Dor Crônica , Estimulação da Medula Espinal , Analgésicos Opioides , Dor Crônica/psicologia , Feminino , Humanos , Masculino , Manejo da Dor/efeitos adversos , Estudos Retrospectivos , Medula Espinal , Estimulação da Medula Espinal/efeitos adversos , Resultado do Tratamento
11.
BMJ Case Rep ; 14(11)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34764118

RESUMO

A ureterocele is a submucosal, cystic dilation of the terminal ureter, either congenital or acquired, as it enters the bladder. It is a rare clinical entity that can be entirely asymptomatic and present as an incidental finding or can manifest in the form of distressing symptoms such as unremitting abdominal pain, haematuria, obstructive uropathy, to name a few. The authors present a case of abdominal pain in a 43-year-old woman who was presumptively attributed to various clinical entities and was finally referred to the chronic pain clinic. The patient underwent numerous diagnostic tests, psychological evaluations and therapeutic interventions, including surgeries, over the years that failed to mitigate her symptoms until urologic imaging reported intravesical ureterocele as the underlying disorder. The case report entails the diagnostic challenge faced by the authors along with the clinical characteristics of ureterocele.


Assuntos
Dor Crônica , Ureter , Ureterocele , Dor Abdominal/etiologia , Adulto , Dor Crônica/etiologia , Feminino , Humanos , Ureter/diagnóstico por imagem , Ureterocele/diagnóstico , Ureterocele/diagnóstico por imagem , Bexiga Urinária
12.
Autoimmun Rev ; 20(11): 102941, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34508917

RESUMO

Although vaccination represents the most promising way to stop or contain the coronavirus disease 2019 (COVID-19) pandemic and safety and effectiveness of available vaccines were proven, a small number of individuals who received anti-SARS-CoV-2 vaccines developed a prothrombotic syndrome. Vaccine-induced immune thrombotic thrombocytopenia (VITT) can be triggered by the adenoviral vector-based vaccine, whereas lipid nanoparticle-mRNA-based vaccines can induce rare cases of deep vein thrombosis (DVT). Although the main pathogenic mechanisms behind this rare phenomenon have not yet been identified, both host and vaccine factors might be involved, with pathology at least in part being related to the vaccine-triggered autoimmune reaction. In this review, we are considering some aspects related to pathogenesis, major risk factors, as well as peculiarities of diagnosis and treatment of this rare condition.


Assuntos
COVID-19 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Vacinas Virais , Autoimunidade , Vacinas contra COVID-19 , Humanos , SARS-CoV-2 , Vacinação/efeitos adversos
13.
Cancers (Basel) ; 13(16)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34439101

RESUMO

Inhibiting the activity of the ligand-activated transcription factor androgen receptor (AR) is the default first-line treatment for metastatic prostate cancer (CaP). Androgen deprivation therapy (ADT) induces remissions, however, their duration varies widely among patients. The reason for this heterogeneity is not known. A better understanding of its molecular basis may improve treatment plans and patient survival. AR's transcriptional activity is regulated in a context-dependent manner and relies on an interplay between its associated transcriptional regulators, DNA recognition motifs, and ligands. Alterations in one or more of these factors induce shifts in the AR cistrome and transcriptional output. Significant variability in AR activity is seen in both castration-sensitive (CS) and castration-resistant CaP (CRPC). Several AR transcriptional regulators undergo somatic alterations that impact their function in clinical CaPs. Some alterations occur in a significant fraction of cases, resulting in CaP subtypes, while others affect only a few percent of CaPs. Evidence is emerging that these alterations may impact the response to CaP treatments such as ADT, radiation therapy, and chemotherapy. Here, we review the contribution of recurring somatic alterations on AR cistrome and transcriptional output and the efficacy of CaP treatments and explore strategies to use these insights to improve treatment plans and outcomes for CaP patients.

14.
Biomolecules ; 11(7)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34356644

RESUMO

Two adenovirus-based vaccines, ChAdOx1 nCoV-19 and Ad26.COV2.S, and two mRNA-based vaccines, BNT162b2 and mRNA.1273, have been approved by the European Medicines Agency (EMA), and are invaluable in preventing and reducing the incidence of coronavirus disease-2019 (COVID-19). Recent reports have pointed to thrombosis with associated thrombocytopenia as an adverse effect occurring at a low frequency in some individuals after vaccination. The causes of such events may be related to SARS-CoV-2 spike protein interactions with different C-type lectin receptors, heparan sulfate proteoglycans (HSPGs) and the CD147 receptor, or to different soluble splice variants of the spike protein, adenovirus vector interactions with the CD46 receptor or platelet factor 4 antibodies. Similar findings have been reported for several viral diseases after vaccine administration. In addition, immunological mechanisms elicited by viral vectors related to cellular delivery could play a relevant role in individuals with certain genetic backgrounds. Although rare, the potential COVID-19 vaccine-induced immune thrombotic thrombocytopenia (VITT) requires immediate validation, especially in risk groups, such as the elderly, chronic smokers, and individuals with pre-existing incidences of thrombocytopenia; and if necessary, a reformulation of existing vaccines.


Assuntos
Vacinas contra COVID-19/efeitos adversos , COVID-19/prevenção & controle , Trombose/etiologia , Vacina de mRNA-1273 contra 2019-nCoV , Ad26COVS1 , Vacina BNT162 , COVID-19/imunologia , ChAdOx1 nCoV-19 , Humanos , Fatores de Risco , SARS-CoV-2/imunologia , Fumantes , Glicoproteína da Espícula de Coronavírus/imunologia , Trombocitopenia/etiologia , Trombocitopenia/imunologia , Trombose/imunologia , Vacinação/efeitos adversos
15.
Breast Cancer Res Treat ; 189(2): 333-345, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34241740

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype that lacks targeted therapies. Patients with TNBC have a very poor prognosis because the disease often metastasizes. New treatment approaches addressing drivers of metastasis and tumor growth are crucial to improving patient outcomes. Developing targeted gene therapy is thus a high priority for TNBC patients. PEA15 (phosphoprotein enriched in astrocytes, 15 kDa) is known to bind to ERK, preventing ERK from being translocated to the nucleus and hence blocking its activity. The biological function of PEA15 is tightly regulated by its phosphorylation at Ser104 and Ser116. However, the function and impact of phosphorylation status of PEA15 in the regulation of TNBC metastasis and in epithelial-to-mesenchymal transition (EMT) are not well understood. METHODS: We established stable cell lines overexpressing nonphosphorylatable (PEA15-AA) and phospho-mimetic (PEA15-DD) mutants. To dissect specific cellular mechanisms regulated by PEA15 phosphorylation status, we performed RT-PCR immune and metastasis arrays. In vivo mouse models were used to determine the effects of PEA15 phosphorylation on tumor growth and metastasis. RESULTS: We found that the nonphosphorylatable mutant PEA15-AA prevented formation of mammospheres and expression of EMT markers in vitro and decreased tumor growth and lung metastasis in in vivo experiments when compared to control, PEA15-WT and phosphomimetic PEA15-DD. However, phosphomimetic mutant PEA15-DD promoted migration, mesenchymal marker expression, tumorigenesis, and lung metastasis in the mouse model. PEA15-AA-mediated inhibition of breast cancer cell migratory capacity and tumorigenesis was the partial result of decreased expression of interleukin-8 (IL-8). Further, we identified that expression of IL-8 was possibly mediated through one of the ERK downstream molecules, Ets-1. CONCLUSIONS: Our results show that PEA15 phosphorylation status serves as an important regulator for PEA15's dual role as an oncogene or tumor suppressor and support the potential of PEA15-AA as a therapeutic strategy for treatment of TNBC.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Transição Epitelial-Mesenquimal , Neoplasias de Mama Triplo Negativas , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Interleucina-8 , Camundongos , Neoplasias de Mama Triplo Negativas/genética
16.
Nanoscale Adv ; 3(23): 6514-6544, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36132656

RESUMO

The presence of harmful and poisonous gases in the environment can have dangerous effects on human health, and therefore portable, flexible, and highly sensitive gas sensors are in high demand for environmental monitoring, pollution control, and medical diagnosis. Currently, the commercialized sensors are based on metal oxides, which generally operate at high temperatures. Additionally, the desorption of chemisorbed gas molecules is also challenging. Hence, due to the large surface area, high flexibility, and good electrical properties of carbon nanomaterials (CNMs) such as carbon nanotubes, graphene and their derivatives (graphene oxide, reduced graphene oxide, and graphene quantum dots), they are considered to be the most promising chemiresistive sensing materials, where their electrical resistance is affected by their interaction with the analyte. Further, to increase their selectivity, nanocomposites of CNMs with metal oxides, metallic nanoparticles, chalcogenides, and polymers have been studied, which exhibit better sensing capabilities even at room temperature. This review summarizes the state-of-the-art progress in research related to CNMs-based sensors. Moreover, to better understand the analyte adsorption on the surface of CNMs, various sensing mechanisms and dependent sensing parameters are discussed. Further, several existing challenges related to CNMs-based gas sensors are elucidated herein, which can pave the way for future research in this area.

17.
Bioorg Chem ; 104: 104326, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33142431

RESUMO

SARS-CoV-2 (COVID-19) epidemic has created an unprecedented medical and economic crisis all over the world. SARS-CoV-2 is found to have more contagious character as compared to MERS-CoV and is spreading in a very fast manner all around the globe. It has affected over 31 million people all over the world till date. This virus shares around 80% of genome similarity with SARS-CoV. In this perspective, we have explored three major targets namely; SARS-CoV-2 spike (S) protein, RNA dependent RNA polymerase, and 3CL or Mpro Protease for the inhibition of SARS-CoV-2. These targets have attracted attention of the medicinal chemists working on computer-aided drug design in developing new small molecules that might inhibit these targets for combating COVID-19 disease. Moreover, we have compared the similarity of these target proteins with earlier reported coronavirus (SARS-CoV). We have observed that both the coronaviruses share around 80% similarity in their amino acid sequence. The key amino acid interactions which can play a crucial role in designing new small molecule inhibitors against COVID-19 have been reported in this perspective. Authors believe that this study will help the medicinal chemists to understand the key amino acids essential for interactions at the active site of target proteins in SARS-CoV-2, based on their similarity with earlier reported viruses. In this review, we have also described the lead molecules under various clinical trials for their efficacy against COVID-19.


Assuntos
Antivirais/metabolismo , SARS-CoV-2/química , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/química , Proteínas não Estruturais Virais/metabolismo , Proteínas Estruturais Virais/metabolismo , Sequência de Aminoácidos , Animais , Antivirais/uso terapêutico , Sítios de Ligação , COVID-19/epidemiologia , COVID-19/virologia , Reposicionamento de Medicamentos , Humanos , Ligação Proteica , SARS-CoV-2/efeitos dos fármacos , Proteínas não Estruturais Virais/química , Proteínas Estruturais Virais/química , Tratamento Farmacológico da COVID-19
18.
J Trace Elem Med Biol ; 62: 126633, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32818862

RESUMO

Experimentally, it has been proved that cadmium served as an effective carcinogen and able to induce tumors in rodents in a dose-specific manner. However, systemic evaluation of cadmium exposure for the transformation of prostatic hyperplasia into prostate cancer (PCa) is still unclear. In the present study, an attempt has been made to establish cadmium-induced human prostate carcinogenesis using an in vitro model of BPH cells. Wide range of cadmium concentrations, i.e., 1 nM, 10 nM, 100 nM and 1µM, were chronically exposed to the human BPH cells for transformation into PCa and monitored using cell and molecular biology approaches. After eight weeks of exposure, the cells showed subtle morphological changes and shifts of cell cycle in the G2M phase. Significant increase in expression of prostatic genes AR, PSA, ER-ß, and 5αR with increased nuclear localization of AR and pluripotency markers Cmyc, Klf4 indicated the carcinogenic effect of Cd. Further, the BPH cells exposed to Cd showed a substantial increase in the secretion of MMP-2 and MMP-9, influencing migratory potential of the cells along with decreased expression of the p63 protein which further strengthen the progression towards carcinogenesis and aggressive tumor studies. Data from the present study state that Cd exhibited marked invasiveness in BPH cells. These observations established a connecting link of BPH towards PCa pathogenesis. Further, the study will also help in investigating the intricate pathways involved in cancer progression.


Assuntos
Cádmio/toxicidade , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/metabolismo , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Próstata/efeitos dos fármacos , Hiperplasia Prostática/metabolismo , Hiperplasia Prostática/patologia
19.
Mol Cell Biochem ; 471(1-2): 129-142, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32504365

RESUMO

Activation of epithelial-AR signaling is identified as the major cause of hyperproliferation of the cells during benign and malignant prostate conditions. However, the contribution of stromal-AR is also precarious due to its secretory actions that contribute to the progression of benign and malignant tumors. The present study was aimed to understand the influence of stromal-AR mediated actions on epithelial cells during BPH condition. The secretome (conditioned media-CM) was collected from AR agonist (testosterone-propionate-TP) and antagonist (Nilutamide-Nil) treated BPH patient-derived stromal cells and exposed to BPH epithelial cells. Epithelial cells exhibited increased cell proliferation with the treatment of CM derived from TP-treated stromal cells (TP-CM) but did not support the clonogenic growth of BPH epithelial cells. However, CM derived from Nil-treated stromal cells (Nil-CM) depicted delayed and aggressive BPH epithelial cell proliferation with increased clonogenicity of BPH epithelial cells. Further, decreased AR levels with increased cMyc transcripts and pAkt levels also validated the clonogenic transformation under the paracrine influence of inhibition of stromal-AR. Moreover, the CM of stromal-AR activation imparted positive regulation of basal/progenitor pool through LGR4, ß-Catenin, and ΔNP63α expression. Hence, the present study highlighted the restricted disease progression and retains the basal/progenitor state of BPH epithelial cells through the activation of stromal-AR. On the contrary, AR-independent aggressive BPH epithelial cell growth due to paracrine action of loss stromal-AR directs us to reform AR pertaining treatment regimes for better clinical outcomes.


Assuntos
Células Epiteliais/patologia , Imidazolidinas/farmacologia , Hiperplasia Prostática/patologia , Receptores Androgênicos/metabolismo , Células Estromais/metabolismo , Propionato de Testosterona/farmacologia , Antagonistas de Androgênios/farmacologia , Proliferação de Células , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Células Epiteliais/metabolismo , Humanos , Masculino , Hiperplasia Prostática/tratamento farmacológico , Hiperplasia Prostática/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo , Células Estromais/efeitos dos fármacos
20.
Sci Rep ; 10(1): 8537, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32444778

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer characterized by metastasis, drug resistance and high rates of recurrence. With a lack or targeted therapies, TNBC is challenging to treat and carries a poor prognosis. Patients with TNBC tumors expressing high levels of ERK2 have a poorer prognosis than those with low ERK2-expressing tumors. The MAPK pathway is often found to be highly activated in TNBC, however the precise functions of the ERK isoforms (ERK1 and ERK2) in cancer progression have not been well defined. We hypothesized that ERK2, but not ERK1, promotes the cancer stem cell (CSC) phenotype and metastasis in TNBC. Stable knockdown clones of the ERK1 and ERK2 isoforms were generated in SUM149 and BT549 TNBC cells using shRNA lentiviral vectors. ERK2 knockdown significantly inhibited anchorage-independent colony formation and mammosphere formation, indicating compromised self-renewal capacity. This effect correlated with a reduction in migration and invasion. SCID-beige mice injected via the tail vein with ERK clones were employed to determine metastatic potential. SUM149 shERK2 cells had a significantly lower lung metastatic burden than control mice or mice injected with SUM149 shERK1 cells. The Affymetrix HGU133plus2 microarray platform was employed to identify gene expression changes in ERK isoform knockdown clones. Comparison of gene expression levels between SUM149 cells with ERK2 or ERK1 knockdown revealed differential and in some cases opposite effects on mRNA expression levels. Those changes associated with ERK2 knockdown predominantly altered regulation of CSCs and metastasis. Our findings indicate that ERK2 promotes metastasis and the CSC phenotype in TNBC.


Assuntos
Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/secundário , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Células-Tronco Neoplásicas/patologia , Neoplasias de Mama Triplo Negativas/patologia , Animais , Apoptose , Biomarcadores Tumorais/genética , Movimento Celular , Proliferação de Células , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos SCID , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/genética , Células-Tronco Neoplásicas/metabolismo , Prognóstico , RNA Interferente Pequeno/genética , Taxa de Sobrevida , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA