Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Hepatol ; 77(3): 710-722, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35358616

RESUMO

BACKGROUND & AIMS: Hepatic insulin resistance in obesity and type 2 diabetes was recently associated with endoplasmic reticulum (ER)-mitochondria miscommunication. These contact sites (mitochondria-associated membranes: MAMs) are highly dynamic and involved in many functions; however, whether MAM dysfunction plays a causal role in hepatic insulin resistance and steatosis is not clear. Thus, we aimed to determine whether and how organelle miscommunication plays a role in the onset and progression of hepatic metabolic impairment. METHODS: We analyzed hepatic ER-mitochondria interactions and calcium exchange in a time-dependent and reversible manner in mice with diet-induced obesity. Additionally, we used recombinant adenovirus to express a specific organelle spacer or linker in mouse livers, to determine the causal impact of MAM dysfunction on hepatic metabolic alterations. RESULTS: Disruption of ER-mitochondria interactions and calcium exchange is an early event preceding hepatic insulin resistance and steatosis in mice with diet-induced obesity. Interestingly, an 8-week reversal diet concomitantly reversed hepatic organelle miscommunication and insulin resistance in obese mice. Mechanistically, disrupting structural and functional ER-mitochondria interactions through the hepatic overexpression of the organelle spacer FATE1 was sufficient to impair hepatic insulin action and glucose homeostasis. In addition, FATE1-mediated organelle miscommunication disrupted lipid-related mitochondrial oxidative metabolism and induced hepatic steatosis. Conversely, reinforcement of ER-mitochondria interactions through hepatic expression of a synthetic linker prevented diet-induced glucose intolerance after 4 weeks' overnutrition. Importantly, ER-mitochondria miscommunication was confirmed in the liver of obese patients with type 2 diabetes, and correlated with glycemia, HbA1c and HOMA-IR index. CONCLUSIONS: ER-mitochondria miscommunication is an early causal trigger of hepatic insulin resistance and steatosis, and can be reversed by switching to a healthy diet. Thus, targeting MAMs could help to restore metabolic homeostasis. LAY SUMMARY: The literature suggests that interactions between the endoplasmic reticulum and mitochondria could play a role in hepatic insulin resistance and steatosis during chronic obesity. In the present study, we reappraised the time-dependent regulation of hepatic endoplasmic reticulum-mitochondria interactions and calcium exchange, investigating reversibility and causality, in mice with diet-induced obesity. We also assessed the relevance of our findings to humans. We show that organelle miscommunication is an early causal trigger of hepatic insulin resistance and steatosis that can be improved by nutritional strategies.


Assuntos
Diabetes Mellitus Tipo 2 , Fígado Gorduroso , Resistência à Insulina , Hepatopatias , Animais , Cálcio/metabolismo , Comunicação , Proteínas de Ligação a DNA/metabolismo , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/metabolismo , Retículo Endoplasmático/metabolismo , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Glucose/metabolismo , Humanos , Fígado/metabolismo , Hepatopatias/metabolismo , Camundongos , Mitocôndrias/metabolismo , Obesidade/complicações , Obesidade/metabolismo , Fatores de Transcrição/metabolismo
2.
Cells ; 8(11)2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31731523

RESUMO

Under physiological conditions, nitric oxide (NO) produced by the endothelial NO synthase (eNOS) upregulates hepatic insulin sensitivity. Recently, contact sites between the endoplasmic reticulum and mitochondria named mitochondria-associated membranes (MAMs) emerged as a crucial hub for insulin signaling in the liver. As mitochondria are targets of NO, we explored whether NO regulates hepatic insulin sensitivity by targeting MAMs. In Huh7 cells, primary rat hepatocytes and mouse livers, enhancing NO concentration increased MAMs, whereas inhibiting eNOS decreased them. In vitro, those effects were prevented by inhibiting protein kinase G (PKG) and mimicked by activating soluble guanylate cyclase (sGC) and PKG. In agreement with the regulation of MAMs, increasing NO concentration improved insulin signaling, both in vitro and in vivo, while eNOS inhibition disrupted this response. Finally, inhibition of insulin signaling by wortmannin did not affect the impact of NO on MAMs, while experimental MAM disruption, using either targeted silencing of cyclophilin D or the overexpression of the organelle spacer fetal and adult testis-expressed 1 (FATE-1), significantly blunted the effects of NO on both MAMs and insulin response. Therefore, under physiological conditions, NO participates to the regulation of MAM integrity through the sGC/PKG pathway and concomitantly improves hepatic insulin sensitivity. Altogether, our data suggest that the induction of MAMs participate in the impact of NO on hepatocyte insulin response.


Assuntos
Hepatócitos/metabolismo , Resistência à Insulina/fisiologia , Membranas Mitocondriais/metabolismo , Animais , Linhagem Celular Tumoral , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Retículo Endoplasmático/metabolismo , Glucose/metabolismo , Humanos , Insulina/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III , Cultura Primária de Células , Ratos , Transdução de Sinais/efeitos dos fármacos , Guanilil Ciclase Solúvel/metabolismo , Wortmanina/metabolismo
3.
Free Radic Biol Med ; 113: 267-279, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29024807

RESUMO

Whereas reactive oxygen species (ROS) can have opposite impacts on insulin signaling, they have mainly been associated with mitochondrial dysfunction in skeletal muscle. We analyzed the relationship between these three features in skeletal muscle of senescence accelerated mice (SAM) prone (P8), which are characterized by enhanced oxidative stress compared to SAM resistant (R1). Oxidative stress, ROS production, antioxidant system, mitochondrial content and functioning, as well as in vitro and in vivo insulin signaling were investigated in gastrocnemius and quadriceps muscles. In SAMP8 compared to SAMR1, muscle content in carbonylated proteins was two-fold (p < 0.01) and ROS production by xanthine oxidase 70% (p < 0.05) higher. Furthermore, insulin-induced Akt phosphorylation measured in vivo and ex vivo as well as muscle glucose uptake measured ex vivo were significantly higher (p < 0.05). Mitochondrial respiration evidenced uncoupling and higher respiration rates with substrates of complexes II and IV, in agreement with higher maximal activity of complexes II and IV (+ 18% and 62%, respectively, p < 0.05). By contrast, maximal activity of complex I was 22% lower (p < 0.05). All strain differences were corrected after 6 months of N-acetylcysteine (NAC) treatment, thus supporting the involvement of high ROS production in these differences. In conclusion in muscle of SAMP8 compared to SAMR1, high ROS production is associated to higher insulin sensitivity and glucose uptake but to lower mitochondrial complex I activity. These conflicting adaptations, with regards to the resulting imbalance between NADH production and use, were associated with intrinsic adjustments in the mitochondrial respiration chain (mitochondrial uncoupling, enhanced complexes II and IV activity). We propose that these bioenergetics adaptations may help at preserving muscle metabolic flexibility of SAMP8.


Assuntos
Complexo II de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Músculo Esquelético/metabolismo , Progéria/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Acetilcisteína/farmacologia , Animais , Antioxidantes/farmacologia , Transporte Biológico , Complexo I de Transporte de Elétrons/genética , Complexo II de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Feminino , Regulação da Expressão Gênica , Glucose/metabolismo , Insulina/metabolismo , Insulina/farmacologia , Resistência à Insulina , Camundongos , Camundongos Transgênicos , Mitocôndrias Musculares/efeitos dos fármacos , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/efeitos dos fármacos , Estresse Oxidativo , Fosforilação , Progéria/tratamento farmacológico , Progéria/genética , Carbonilação Proteica , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Xantina Oxidase/genética , Xantina Oxidase/metabolismo
4.
Diabetes ; 64(3): 1011-24, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25277399

RESUMO

A growing body of evidence suggests that exposure to traffic-related air pollution is a risk factor for type 2 diabetes. Ozone, a major photochemical pollutant in urban areas, is negatively associated with fasting glucose and insulin levels, but most aspects of this association remain to be elucidated. Using an environmentally realistic concentration (0.8 parts per million), we demonstrated that exposure of rats to ozone induced whole-body insulin resistance and oxidative stress, with associated endoplasmic reticulum (ER) stress, c-Jun N-terminal kinase (JNK) activation, and disruption of insulin signaling in skeletal muscle. Bronchoalveolar lavage fluids from ozone-treated rats reproduced this effect in C2C12 myotubes, suggesting that toxic lung mediators were responsible for the phenotype. Pretreatment with the chemical chaperone 4-phenylbutyric acid, the JNK inhibitor SP600125, or the antioxidant N-acetylcysteine alleviated insulin resistance, demonstrating that ozone sequentially triggered oxidative stress, ER stress, and JNK activation to impair insulin signaling in muscle. This study is the first to report that ozone plays a causative role in the development of insulin resistance, suggesting that it could boost the development of diabetes. We therefore provide a potential mechanism linking pollutant exposure and the increased incidence of metabolic diseases.


Assuntos
Resistência à Insulina/fisiologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Ozônio/toxicidade , Acetilcisteína/farmacologia , Animais , Antracenos/farmacologia , Líquido da Lavagem Broncoalveolar/química , Linhagem Celular , Ativação Enzimática/efeitos dos fármacos , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Camundongos , Fenilbutiratos/farmacologia , Ratos
5.
PLoS One ; 9(10): e110653, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25337938

RESUMO

Inflammation is now recognized as a major factor contributing to type 2 diabetes (T2D). However, while the mechanisms and consequences associated with white adipose tissue inflammation are well described, very little is known concerning the situation in skeletal muscle. The aim of this study was to investigate, in vitro and in vivo, how skeletal muscle inflammation develops and how in turn it modulates local and systemic insulin sensitivity in different mice models of T2D and in humans, focusing on the role of the chemokine MCP1. Here, we found that skeletal muscle inflammation and macrophage markers are increased and associated with insulin resistance in mice models and humans. In addition, we demonstrated that intra-muscular TNFα expression is exclusively restricted to the population of intramuscular leukocytes and that the chemokine MCP1 was associated with skeletal muscle inflammatory markers in these models. Furthermore, we demonstrated that exposure of C2C12 myotubes to palmitate elevated the production of the chemokine MCP1 and that the muscle-specific overexpression of MCP1 in transgenic mice induced the local recruitment of macrophages and altered local insulin sensitivity. Overall our study demonstrates that skeletal muscle inflammation is clearly increased in the context of T2D in each one of the models we investigated, which is likely consecutive to the lipotoxic environment generated by peripheral insulin resistance, further increasing MCP1 expression in muscle. Consequently, our results suggest that MCP1-mediated skeletal muscle macrophages recruitment plays a role in the etiology of T2D.


Assuntos
Quimiocina CCL2/fisiologia , Resistência à Insulina/imunologia , Macrófagos/imunologia , Músculo Esquelético/imunologia , Miosite/imunologia , Animais , Linhagem Celular , Movimento Celular , Diabetes Mellitus Tipo 2/imunologia , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Obesos , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Miosite/metabolismo
6.
Cell Commun Signal ; 12: 4, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24410832

RESUMO

BACKGROUND: The fat mass and obesity associated (FTO) gene is related to obesity and type 2 diabetes, but its function is still largely unknown. A link between leptin receptor-signal transducers and activators of transcription 3 (LepR-STAT3) signalling pathway and FTO was recently suggested in the hypothalamus. Because of the presence of FTO in liver and the role of LepR-STAT3 in the control of hepatic metabolism, we investigated both in vitro and in vivo the potential interrelationship between FTO and LepR-STAT3 signalling pathway in liver and the impact of FTO overexpression on leptin action and glucose homeostasis in liver of mice. RESULTS: We found that FTO protein expression is regulated by both leptin and IL-6, concomitantly to an induction of STAT3 tyrosine phosphorylation, in leptin receptor (LepRb) expressing HuH7 cells. In addition, FTO overexpression in vitro altered both leptin-induced Y705 and S727 STAT3 phosphorylation, leading to dysregulation of glucose-6-phosphatase (G6P) expression and mitochondrial density, respectively. In vivo, liver specific FTO overexpression in mice induced a reducetion of Y705 phosphorylation of STAT3 in nuclear fraction, associated with reduced SOCS3 and LepR mRNA levels and with an increased G6P expression. Interestingly, FTO overexpression also induced S727 STAT3 phosphorylation in liver mitochondria, resulting in an increase of mitochondria function and density. Altogether, these data indicate that FTO promotes mitochondrial recruitment of STAT3 to the detriment of its nuclear localization, affecting in turn oxidative metabolism and the expression of leptin-targeted genes. Interestingly, these effects were associated in mice with alterations of leptin action and hyperleptinemia, as well as hyperglycemia, hyperinsulinemia and glucose intolerance. CONCLUSIONS: Altogether, these data point a novel regulatory loop between FTO and leptin-STAT3 signalling pathways in liver cells, and highlight a new role of FTO in the regulation of hepatic leptin action and glucose metabolism.


Assuntos
Fígado/metabolismo , Oxigenases de Função Mista/metabolismo , Oxo-Ácido-Liases/metabolismo , Receptores para Leptina/metabolismo , Fator de Transcrição STAT3/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Animais , Linhagem Celular Tumoral , Células Cultivadas , Glucose-6-Fosfato/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Hepáticas/metabolismo , Oxigenases de Função Mista/genética , Mutação , Oxo-Ácido-Liases/genética , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Receptores para Leptina/genética , Fator de Transcrição STAT3/genética , Transdução de Sinais , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/metabolismo
7.
Pain ; 153(3): 553-561, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22177224

RESUMO

Diabetes comorbidities include disabling peripheral neuropathy (DPN) and an increased risk of developing cancer. Antimitotic drugs, such as paclitaxel, are well known to facilitate the occurrence of peripheral neuropathy. Practitioners frequently observe the development or co-occurrence of enhanced DPN, especially cold sensitivity, in diabetic patients during chemotherapy. Preclinical studies showed that reactive oxygen species (ROS) and cold activate transient receptor potential ankyrin-1 (TRPA1) cation channels, which are involved in cold-evoked pain transduction signaling in DPN. Additionally, paclitaxel treatment has been associated with an accumulation of atypical mitochondria in the sensory nerves of rats. We hypothesized that paclitaxel might potentiate cold hyperalgesia by increasing mitochondrial injuries and TRPA1 activation. Thus, the kinetics of paclitaxel-induced cold hyperalgesia, mitochondrial ROS production, and TRPA1 expression were evaluated in dorsal root ganglia of normoglycemic and streptozotocin-induced diabetic rats. In diabetic rats, paclitaxel significantly enhanced cold hyperalgesia in comparison to normoglycemic paclitaxel-treated control rats. These effects were prevented by N-acetyl-cysteine, a reducing agent, and by HC030031, an antagonist of TRPA1. In diabetic and control rats, paclitaxel treatment was associated with an accumulation of atypical mitochondria and a 2-fold increase in mitochondrial ROS production. Moreover, mRNA levels of glutathione peroxidase 4 and glutathione-S-reductase were significantly lower in diabetic groups treated with paclitaxel. Finally, TRPA1 gene expression was enhanced by 45% in diabetic rats. Paclitaxel potentiation of cold hyperalgesia in diabetes may result from the combination of increased mitochondrial ROS production and poor radical detoxification induced by paclitaxel treatment and diabetes-related overexpression of TRPA1.


Assuntos
Antineoplásicos Fitogênicos/efeitos adversos , Diabetes Mellitus Experimental/tratamento farmacológico , Hiperalgesia/induzido quimicamente , Hiperalgesia/patologia , Mitocôndrias/metabolismo , Paclitaxel/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo , Canais de Cátion TRPC/metabolismo , Acetilcisteína/uso terapêutico , Análise de Variância , Animais , Temperatura Baixa , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/complicações , Modelos Animais de Doenças , Gânglios Espinais/patologia , Teste de Tolerância a Glucose , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Peróxido de Hidrogênio/metabolismo , Hiperalgesia/metabolismo , Hiperalgesia/prevenção & controle , Hipoxantina Fosforribosiltransferase/metabolismo , Masculino , Microscopia Eletrônica de Transmissão , Mitocôndrias/efeitos dos fármacos , Medição da Dor , Limiar da Dor , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/patologia , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/patologia , Células Receptoras Sensoriais/ultraestrutura , Estreptozocina/toxicidade , Canal de Cátion TRPA1 , Canais de Cátion TRPC/genética , Fatores de Tempo
8.
Toxicol Lett ; 207(3): 251-7, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21979172

RESUMO

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and related substances are ubiquitous environmental pollutants that exert adverse effects on reproductive processes. In testis, Leydig cells which produce testosterone are under hormonal and local control exerted by cytokines including TNFα. Using mouse Leydig primary cell cultures as a model, we studied the effects of TCDD on the steroidogenic outcome of Leydig cells and the gene expression levels of Ccl5 and Cxcl4, previously shown to be target genes of TCDD in testis. We found that TCDD did not alter the steroidogenic outcome of Leydig cells but that it up-regulated Cxcl4 gene expression levels. TCDD also impacted Ccl5 gene expression when cells had been co-treated with TNFα. TCDD action probably initiated with binding to the aryl hydrocarbon receptor (AhR) present on Leydig cells. TCDD regulated the gene expression levels of AhR (transient down-regulation) and its repressor AhRR and Cyp1b1 (up-regulation). The trophic human chorionic gonadotropin (hCG) hormone did not impact AhR, its repressor AhRR or Cyp1b1 but it opposed the TCDD-enhanced AhRR mRNA levels. Conversely, TNFα stimulated AhR gene expression levels. Collectively, it is suggested that the impact of TCDD on expression of target genes in Leydig cells may operate under the complex network of hormones and cytokines.


Assuntos
Células Intersticiais do Testículo/efeitos dos fármacos , Dibenzodioxinas Policloradas/toxicidade , Animais , Hidrocarboneto de Aril Hidroxilases/biossíntese , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Fatores de Transcrição Hélice-Alça-Hélice Básicos/efeitos dos fármacos , Células Cultivadas , Quimiocina CCL5/metabolismo , Citocromo P-450 CYP1B1 , Expressão Gênica/efeitos dos fármacos , Técnicas In Vitro , Células Intersticiais do Testículo/metabolismo , Masculino , Camundongos , Fator Plaquetário 4/metabolismo , Receptores de Hidrocarboneto Arílico/biossíntese , Receptores de Hidrocarboneto Arílico/efeitos dos fármacos , Proteínas Repressoras/biossíntese , Proteínas Repressoras/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Testosterona/biossíntese , Fator de Necrose Tumoral alfa/farmacologia
9.
Am J Physiol Endocrinol Metab ; 300(3): E581-91, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21224483

RESUMO

Reactive oxygen species (ROS) have been widely implicated in the pathogenesis of diabetes and more recently in mitochondrial alterations in skeletal muscle of diabetic mice. However, so far the exact sources of ROS in skeletal muscle have remained elusive. Aiming at better understanding the causes of mitochondrial alterations in diabetic muscle, we designed this study to characterize the sites of ROS production in skeletal muscle of streptozotocin (STZ)-induced diabetic mice. Hyperglycemic STZ mice showed increased markers of systemic and muscular oxidative stress, as evidenced by increased circulating H(2)O(2) and muscle carbonylated protein levels. Interestingly, insulin treatment reduced hyperglycemia and improved systemic and muscular oxidative stress in STZ mice. We demonstrated that increased oxidative stress in muscle of STZ mice is associated with an increase of xanthine oxidase (XO) expression and activity and is mediated by an induction of H(2)O(2) production by both mitochondria and XO. Finally, treatment of STZ mice, as well as high-fat and high-sucrose diet-fed mice, with oxypurinol reduced markers of systemic and muscular oxidative stress and prevented structural and functional mitochondrial alterations, confirming the in vivo relevance of XO in ROS production in diabetic mice. These data indicate that mitochondria and XO are the major sources of hyperglycemia-induced ROS production in skeletal muscle and that the inhibition of XO reduces oxidative stress and improves mitochondrial alterations in diabetic muscle.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Hiperglicemia/complicações , Mitocôndrias Musculares/fisiologia , Músculo Esquelético/metabolismo , Estresse Oxidativo/fisiologia , Xantina Oxidase/antagonistas & inibidores , Trifosfato de Adenosina/biossíntese , Animais , Antioxidantes/metabolismo , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Tipo 1/induzido quimicamente , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/metabolismo , Dieta , Inibidores Enzimáticos/farmacologia , Peróxido de Hidrogênio/metabolismo , Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Mitocôndrias Musculares/enzimologia , Músculo Esquelético/enzimologia , Oxipurinol/farmacologia , Carbonilação Proteica/efeitos dos fármacos , RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
J Nutr Biochem ; 22(1): 53-9, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20303729

RESUMO

Low-grade inflammation is a risk factor for the onset of atherosclerosis. Little is known about the involvement of endotoxin absorption from the gut during the digestion of lipids. In the present study, we first investigated in humans the impact of a mixed meal containing dispersed lipids on postprandial endotoxemia and inflammation. We then investigated the effect of (i) oil emulsification in vivo in rats and (ii) fatty acid amounts in vitro using Caco-2 cells on postprandial endotoxemia. In humans, postprandial endotoxemia increased early after the meal. Moreover, we evidenced that the endotoxin receptor sCD14 increased during digestion and that chylomicrons could contribute to absorbed endotoxin transport. This could explain the significant peak of inflammatory cytokine IL-6 that we observed 2 h after the mixed meal. Interestingly, in rats, the emulsion led to both higher endotoxemia and hypertriglyceridemia than oil and compared to a control saline load. In vitro, incubation of Caco-2 cells with increasing fatty acid concentrations enhanced epithelial absorption of endotoxin. To our knowledge, this is the first study evidencing in healthy humans that, following a mixed meal containing lipids, increased endotoxemia is associated with raised sCD14 and a peak of IL-6. On a repeated basis, this may thus be a triggering cascade for the onset of atherosclerosis. In this respect, optimizing both dietary fat amount and structure could be a possible strategy to limit such low-grade endotoxemia and inflammation by the control of postprandial lipemia.


Assuntos
Gorduras na Dieta/efeitos adversos , Endotoxemia/epidemiologia , Endotoxinas/farmacocinética , Inflamação/epidemiologia , Absorção Intestinal , Período Pós-Prandial , Adulto , Animais , Aterosclerose/epidemiologia , Células CACO-2 , Quilomícrons/metabolismo , Emulsões , Endotoxemia/sangue , Endotoxinas/sangue , Endotoxinas/metabolismo , Humanos , Inflamação/sangue , Interleucina-6/sangue , Receptores de Lipopolissacarídeos/sangue , Lipopolissacarídeos/sangue , Lipopolissacarídeos/farmacocinética , Masculino , Distribuição Aleatória , Ratos , Ratos Wistar , Receptores Imunológicos/sangue , Adulto Jovem
11.
Reproduction ; 135(4): 479-88, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18367508

RESUMO

Extracellular matrix (ECM) proteins have been shown to alter Leydig cell steroidogenesis in vitro, substantiating the hypothesis that Leydig cell steroidogenic activity and matrix environment are interdependent events. However, the nature of the ECM components synthesized by Leydig cells and their regulation by LH/human chorionic gonadotropin (hCG) remain unknown. Here, we examine the occurrence of the 11 laminin subunits and the 6 alpha chains of collagen IV (COL4A1-6) by RT-PCR in Leydig cells cultured with or without LH/hCG. Leydig cells were a tumor Leydig cell line (mLTC-1) or 8-week-old mice Leydig cells. Based on PCR data, it is suggested that normal Leydig cells may synthesize a maximum of 11 laminin heterotrimers and the 6 alpha chains of collagen IV. They also may synthesize various proteases and inhibitors of the metzincin family. The mLTC-1 cells have a limited repertoire as compared with normal Leydig cells. Interestingly, none of the ten proteases and inhibitors monitored is under LH-hCG regulation whereas every protease and inhibitor of the serine protease family yet identified in Leydig cells is under gonadotropin regulation. In addition, a few laminin and collagen subunit genes are regulated by LH/hCG. These are laminins alpha3 and gamma3 (Lama3 and Lamc3), Col4a3, and Col4a6, which are negatively regulated by LH/hCG in both Leydig cell types, and Col4a4, which was downregulated in primary cultures but not in mLTC-1 cells. Collectively, the present study suggests that Leydig cells modulate in a selective fashion their matrix environment in response to their trophic hormone. This may alter the steroidogenic outcome of Leydig cells.


Assuntos
Colágeno Tipo IV/genética , Matriz Extracelular/metabolismo , Laminina/genética , Células Intersticiais do Testículo/metabolismo , Isoformas de Proteínas/genética , Animais , Linhagem Celular , Células Cultivadas , Gonadotropina Coriônica/farmacologia , Primers do DNA/genética , Matriz Extracelular/efeitos dos fármacos , Expressão Gênica , Células Intersticiais do Testículo/efeitos dos fármacos , Hormônio Luteinizante/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA