Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Intern Med ; 295(3): 346-356, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38011942

RESUMO

BACKGROUND: Choline acetyltransferase (ChAT) is required for the biosynthesis of acetylcholine, the molecular mediator that inhibits cytokine production in the cholinergic anti-inflammatory pathway of the vagus nerve inflammatory reflex. Abundant work has established the biology of cytoplasmic ChAT in neurons, but much less is known about the potential presence and function of ChAT in the extracellular milieu. OBJECTIVES: We evaluated the hypothesis that extracellular ChAT activity responds to inflammation and serves to inhibit cytokine release and attenuate inflammation. METHODS: After developing novel methods for quantification of ChAT activity in plasma, we determined whether ChAT activity changes in response to inflammatory challenges. RESULTS: Active ChAT circulates within the plasma compartment of mice and responds to immunological perturbations. Following the administration of bacterial endotoxin, plasma ChAT activity increases for 12-48 h, a time period that coincides with declining tumor necrosis factor (TNF) levels. Further, a direct activation of the cholinergic anti-inflammatory pathway by vagus nerve stimulation significantly increases plasma ChAT activity, whereas the administration of bioactive recombinant ChAT (r-ChAT) inhibits endotoxin-stimulated TNF production and anti-ChAT antibodies exacerbate endotoxin-induced TNF levels, results of which suggest that ChAT activity regulates endogenous TNF production. Administration of r-ChAT significantly attenuates pro-inflammatory cytokine production and disease activity in the dextran sodium sulfate preclinical model of inflammatory bowel disease. Finally, plasma ChAT levels are also elevated in humans with sepsis, with the highest levels observed in a patient who succumbed to infection. CONCLUSION: As a group, these results support further investigation of ChAT as a counter-regulator of inflammation and potential therapeutic agent.


Assuntos
Acetilcolina , Colina O-Acetiltransferase , Humanos , Colina O-Acetiltransferase/metabolismo , Inflamação , Fator de Necrose Tumoral alfa/metabolismo , Citocinas , Endotoxinas
2.
Brain Stimul ; 16(3): 703-711, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37055009

RESUMO

Focused ultrasound stimulation (FUS) activates mechanosensitive ion channels and is emerging as a method of noninvasive neuromodulation. In preclinical studies, FUS of the spleen (sFUS) activates an anti-inflammatory neural pathway which suppresses acute and chronic inflammation. However, the relevance of sFUS for regulating inflammatory responses in humans is unknown. Here, we used a modified diagnostic ultrasound imaging system to target the spleen of healthy human subjects with 3 min of continuously swept or stationary focused pulsed ultrasound, delivered at three different energy levels within allowable safety exposure limits. Potential anti-inflammatory effects of sFUS were assessed by measuring sFUS-elicited changes in endotoxin-induced tumor necrosis factor (TNF) production in whole blood samples from insonified subjects. We found that stimulation with either continuously swept or focused pulsed ultrasound has an anti-inflammatory effect: sFUS lowers TNF production for >2 h, with TNF returning to baseline by 24 h following sFUS. This response is independent of anatomical target (i.e., spleen hilum or parenchyma) or ultrasound energy level. No clinical, biochemical, or hematological parameters are adversely impacted. This is the first demonstration that sFUS suppresses the normal inflammatory response in humans, with potential implications for noninvasive bioelectronic therapy of inflammatory disorders.


Assuntos
Baço , Terapia por Ultrassom , Humanos , Baço/diagnóstico por imagem , Ultrassonografia , Terapia por Ultrassom/métodos , Vias Neurais , Ondas Ultrassônicas
3.
Mol Med ; 28(1): 57, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35578169

RESUMO

BACKGROUND: Severe COVID-19 is characterized by pro-inflammatory cytokine release syndrome (cytokine storm) which causes high morbidity and mortality. Recent observational and clinical studies suggest famotidine, a histamine 2 receptor (H2R) antagonist widely used to treat gastroesophageal reflux disease, attenuates the clinical course of COVID-19. Because evidence is lacking for a direct antiviral activity of famotidine, a proposed mechanism of action is blocking the effects of histamine released by mast cells. Here we hypothesized that famotidine activates the inflammatory reflex, a brain-integrated vagus nerve mechanism which inhibits inflammation via alpha 7 nicotinic acetylcholine receptor (α7nAChR) signal transduction, to prevent cytokine storm. METHODS: The potential anti-inflammatory effects of famotidine and other H2R antagonists were assessed in mice exposed to lipopolysaccharide (LPS)-induced cytokine storm. As the inflammatory reflex is integrated and can be stimulated in the brain, and H2R antagonists penetrate the blood brain barrier poorly, famotidine was administered by intracerebroventricular (ICV) or intraperitoneal (IP) routes. RESULTS: Famotidine administered IP significantly reduced serum and splenic LPS-stimulated tumor necrosis factor (TNF) and IL-6 concentrations, significantly improving survival. The effects of ICV famotidine were significantly more potent as compared to the peripheral route. Mice lacking mast cells by genetic deletion also responded to famotidine, indicating the anti-inflammatory effects are not mast cell-dependent. Either bilateral sub-diaphragmatic vagotomy or genetic knock-out of α7nAChR abolished the anti-inflammatory effects of famotidine, indicating the inflammatory reflex as famotidine's mechanism of action. While the structurally similar H2R antagonist tiotidine displayed equivalent anti-inflammatory activity, the H2R antagonists cimetidine or ranitidine were ineffective even at very high dosages. CONCLUSIONS: These observations reveal a previously unidentified vagus nerve-dependent anti-inflammatory effect of famotidine in the setting of cytokine storm which is not replicated by high dosages of other H2R antagonists in clinical use. Because famotidine is more potent when administered intrathecally, these findings are also consistent with a primarily central nervous system mechanism of action.


Assuntos
COVID-19 , Famotidina , Animais , Anti-Inflamatórios , Síndrome da Liberação de Citocina , Famotidina/farmacologia , Histamina , Antagonistas dos Receptores H2 da Histamina , Lipopolissacarídeos , Camundongos , Reflexo , Nervo Vago , Receptor Nicotínico de Acetilcolina alfa7
4.
Res Sq ; 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35441176

RESUMO

Background. Severe COVID-19 is characterized by pro-inflammatory cytokine release syndrome (cytokine storm) which causes high morbidity and mortality. Recent observational and clinical studies suggest famotidine, a histamine 2 receptor (H2R) antagonist widely used to treat gastroesophageal reflux disease , attenuates the clinical course of COVID-19. Because evidence is lacking for a direct antiviral activity of famotidine, a proposed mechanism of action is blocking the effects of histamine released by mast cells. Here we hypothesized that famotidine activates the inflammatory reflex, a brain-integrated vagus nerve mechanism which inhibits inflammation via alpha 7 nicotinic acetylcholine receptor ( α7nAChR ) signal transduction, to prevent cytokine storm. Methods. The potential anti-inflammatory effects of famotidine and other H2R antagonists was assessed in mice exposed to lipopolysaccharide (LPS)-induced cytokine storm. As the inflammatory reflex is integrated and can be stimulated in the brain, and H2R antagonists penetrate the blood brain barrier poorly, famotidine was administered by intracerebroventricular (ICV) or intraperitoneal (IP) routes. Results. Famotidine administered IP significantly reduced serum and splenic LPS-stimulated tumor necrosis factor α and interleukin-6 concentrations, significantly improving survival. The effects of ICV famotidine were significantly more potent as compared to the peripheral route. Mice lacking mast cells by genetic deletion also responded to famotidine, indicating the anti-inflammatory effects are not mast cell dependent. Either bilateral sub-diaphragmatic vagotomy or genetic knock-out of α7nAChR abolished the anti-inflammatory effects of famotidine, indicating the inflammatory reflex as famotidine's mechanism of action. While the structurally similar H2R antagonist tiotidine displayed equivalent anti-inflammatory activity, the H2R antagonists cimetidine or ranitidine were ineffective even at very high dosages. Conclusions. These observations reveal a previously unidentified vagus nerve-dependent anti-inflammatory effect of famotidine in the setting of cytokine storm which is not replicated by high dosages of other H2R antagonists in clinical use. Because famotidine is more potent when administered intrathecally, these findings are also consistent with a primarily central nervous system mechanism of action.

5.
Proc Natl Acad Sci U S A ; 117(47): 29803-29810, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33168718

RESUMO

In the brain, compact clusters of neuron cell bodies, termed nuclei, are essential for maintaining parameters of host physiology within a narrow range optimal for health. Neurons residing in the brainstem dorsal motor nucleus (DMN) project in the vagus nerve to communicate with the lungs, liver, gastrointestinal tract, and other organs. Vagus nerve-mediated reflexes also control immune system responses to infection and injury by inhibiting the production of tumor necrosis factor (TNF) and other cytokines in the spleen, although the function of DMN neurons in regulating TNF release is not known. Here, optogenetics and functional mapping reveal cholinergic neurons in the DMN, which project to the celiac-superior mesenteric ganglia, significantly increase splenic nerve activity and inhibit TNF production. Efferent vagus nerve fibers terminating in the celiac-superior mesenteric ganglia form varicose-like structures surrounding individual nerve cell bodies innervating the spleen. Selective optogenetic activation of DMN cholinergic neurons or electrical activation of the cervical vagus nerve evokes action potentials in the splenic nerve. Pharmacological blockade and surgical transection of the vagus nerve inhibit vagus nerve-evoked splenic nerve responses. These results indicate that cholinergic neurons residing in the brainstem DMN control TNF production, revealing a role for brainstem coordination of immunity.


Assuntos
Endotoxemia/fisiopatologia , Inflamação/patologia , Bulbo/fisiologia , Baço/inervação , Fatores de Necrose Tumoral/metabolismo , Nervo Vago/fisiologia , Potenciais de Ação/imunologia , Animais , Neurônios Colinérgicos/fisiologia , Modelos Animais de Doenças , Endotoxemia/imunologia , Gânglios Simpáticos/fisiologia , Humanos , Inflamação/imunologia , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/imunologia , Masculino , Bulbo/citologia , Camundongos , Camundongos Transgênicos , Optogenética , Ratos , Transdução de Sinais/imunologia , Baço/metabolismo , Técnicas Estereotáxicas
6.
Bioelectron Med ; 6: 8, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32309522

RESUMO

Background: Electrical stimulation of peripheral nerves is a widely used technique to treat a variety of conditions including chronic pain, motor impairment, headaches, and epilepsy. Nerve stimulation to achieve efficacious symptomatic relief depends on the proper selection of electrical stimulation parameters to recruit the appropriate fibers within a nerve. Recently, electrical stimulation of the vagus nerve has shown promise for controlling inflammation and clinical trials have demonstrated efficacy for the treatment of inflammatory disorders. This application of vagus nerve stimulation activates the inflammatory reflex, reducing levels of inflammatory cytokines during inflammation. Methods: Here, we wanted to test whether altering the parameters of electrical vagus nerve stimulation would change circulating cytokine levels of normal healthy animals in the absence of increased inflammation. To examine this, we systematically tested a set of electrical stimulation parameters and measured serum cytokine levels in healthy mice. Results: Surprisingly, we found that specific combinations of pulse width, pulse amplitude, and frequency produced significant increases of the pro-inflammatory cytokine tumor necrosis factor (TNF), while other parameters selectively lowered serum TNF levels, as compared to sham-stimulated mice. In addition, serum levels of the anti-inflammatory cytokine interleukin-10 (IL-10) were significantly increased by select parameters of electrical stimulation but remained unchanged with others. Conclusions: These results indicate that electrical stimulation parameter selection is critically important for the modulation of cytokines via the cervical vagus nerve and that specific cytokines can be increased by electrical stimulation in the absence of inflammation. As the next generation of bioelectronic therapies and devices are developed to capitalize on the neural regulation of inflammation, the selection of nerve stimulation parameters will be a critically important variable for achieving cytokine-specific changes.

7.
Mol Med ; 25(1): 13, 2019 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-30975096

RESUMO

BACKGROUND: Extracellular high mobility group box 1 protein  (HMGB1) serves a central role in inflammation as a transporter protein, which binds other immune-activating molecules that are endocytosed via the receptor for advanced glycation end-products (RAGE). These pro-inflammatory complexes are targeted to the endolysosomal compartment, where HMGB1 permeabilizes the lysosomes. This enables HMGB1-partner molecules to avoid degradation, to leak into the cytosol, and to reach cognate immune-activating sensors. Lipopolysaccharide (LPS) requires this pathway to generate pyroptosis by accessing its key cytosolic receptors, murine caspase 11, or the human caspases 4 and 5. This lytic, pro-inflammatory cell death plays a fundamental pathogenic role in gram-negative sepsis. The aim of the study was to identify molecules inhibiting HMGB1 or HMGB1/LPS cellular internalization. METHODS: Endocytosis was studied in cultured macrophages using Alexa Fluor-labeled HMGB1 or complexes of HMGB1 and Alexa Fluor-labeled LPS in the presence of an anti-HMGB1 monoclonal antibody (mAb), recombinant HMGB1 box A protein, acetylcholine, the nicotinic acetylcholine receptor subtype alpha 7 (α7 nAChR) agonist GTS-21, or a dynamin-specific inhibitor of endocytosis. Images were obtained by fluorescence microscopy and quantified by the ImageJ processing program (NIH). Data were analyzed using student's t test or one-way ANOVA followed by the least significant difference or Tukey's tests. RESULTS: Anti-HMGB1 mAb, recombinant HMGB1 antagonist box A protein, acetylcholine, GTS-21, and the dynamin-specific inhibitor of endocytosis inhibited internalization of HMGB1 or HMGB1-LPS complexes in cultured macrophages. These agents prevented macrophage activation in response to HMGB1 and/or HMGB1-LPS complexes. CONCLUSION: These results demonstrate that therapies based on HMGB1 antagonists and the cholinergic anti-inflammatory pathway share a previously unrecognized molecular mechanism of substantial clinical relevance.


Assuntos
Proteína HMGB1/metabolismo , Lipopolissacarídeos/farmacologia , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Acetilcolina/farmacologia , Animais , Células Cultivadas , Agonistas Colinérgicos/farmacologia , Endocitose/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência , Células RAW 264.7
8.
J Orthop Res ; 37(1): 220-231, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30273982

RESUMO

Intervertebral disc (IVD) degeneration (DD) is associated with low back pain, the leading cause of disability worldwide. Damage-associated molecular patterns (DAMPs) that contribute to inflammation and trigger DD have not been well characterized. Extracellular high mobility group box-1 (HMGB1) protein has been implicated as a potent DAMP and pro-inflammatory stimulus in the immune system. In this study, we show that HMGB1 and IL-6 levels increase in patients with advanced DD in comparison to early DD. This study further tested the hypothesis that HMGB1 promotes inflammatory signaling driving DD in human nucleus pulposus (NP) cells and tissue. Immunofluorescence and western blot analysis confirmed the expression of HMGB1 and its extracellular release by NP cells under cell stress. Gene expression and protein quantification indicate that HMGB1 stimulates the expression IL-6 and MMP-1 in a dose-dependent manner. The contributions of toll-like receptor (TLR) -2, -4 and receptor for advanced glycation end products (RAGE) as receptors mediating HMGB1 signaling was examined using small molecule inhibitors. Inhibition of TLR-4 signaling, with TAK-242, completely abrogated HMGB1 induced IL-6 and MMP-1 expression, whereas inhibition of TLR-2, with O-vanillin, or RAGE, with FPS-ZM1, had mild inhibitory effects. HMGB1 stimulation activated NF-ĸB signaling while TAK-242 co-treatment abrogated it. Lastly, effects of HMGB1 on matrix deposition was evaluated in a 3D culture system of human NP cells. These results implicate HMGB1 as a potent DAMP that promotes inflammation in NP cells and degradation of NP tissues. TLR4-HMGB1 axis is a potential major pathway to alleviate disc inflammation and mitigate DD. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.


Assuntos
Alarminas/metabolismo , Proteína HMGB1/metabolismo , Núcleo Pulposo/metabolismo , Estresse Fisiológico , Receptor 4 Toll-Like/metabolismo , Adulto , Feminino , Humanos , Interleucina-6/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Metaloproteinase 1 da Matriz/metabolismo , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Cultura Primária de Células
9.
Front Immunol ; 9: 2648, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30538698

RESUMO

Macrophage cytokine production is regulated by neural signals, for example in the inflammatory reflex. Signals in the vagus and splenic nerves are relayed by choline acetyltransferase+ T cells that release acetylcholine, the cognate ligand for alpha7 nicotinic acetylcholine subunit-containing receptors (α7nAChR), and suppress TNF release in macrophages. Here, we observed that electrical vagus nerve stimulation with a duration of 0.1-60 s significantly reduced systemic TNF release in experimental endotoxemia. This suppression of TNF was sustained for more than 24 h, but abolished in mice deficient in the α7nAChR subunit. Exposure of primary human macrophages and murine RAW 264.7 macrophage-like cells to selective ligands for α7nAChR for 1 h in vitro attenuated TNF production for up to 24 h in response to endotoxin. Pharmacological inhibition of adenylyl cyclase (AC) and knockdown of adenylyl cyclase 6 (AC6) or c-FOS abolished cholinergic suppression of endotoxin-induced TNF release. These findings indicate that action potentials in the inflammatory reflex trigger a change in macrophage behavior that requires AC and phosphorylation of the cAMP response element binding protein (CREB). These observations further our mechanistic understanding of neural regulation of inflammation and may have implications for development of bioelectronic medicine treatment of inflammatory diseases.


Assuntos
Adenilil Ciclases/metabolismo , Inflamação/metabolismo , Reflexo/fisiologia , Fatores de Necrose Tumoral/metabolismo , Animais , Proteína de Ligação a CREB/metabolismo , Linhagem Celular , Endotoxinas/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Ratos , Ratos Sprague-Dawley , Baço/metabolismo , Nervo Vago/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
10.
Front Immunol ; 9: 2032, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30237803

RESUMO

Patients surviving a septic episode exhibit persistent immune impairment and increased mortality due to enhanced vulnerability to infections. In the present study, using the cecal ligation and puncture (CLP) model of polymicrobial sepsis, we addressed the hypothesis that altered vagus nerve activity contributes to immune impairment in sepsis survivors. CLP-surviving mice exhibited less TNFα in serum following administration of LPS, a surrogate for an infectious challenge, than control-operated (control) mice. To evaluate the role of the vagus nerve in the diminished response to LPS, mice were subjected to bilateral subdiaphragmatic vagotomy at 2 weeks post-CLP. CLP-surviving vagotomized mice exhibited increased serum and tissue TNFα levels in response to LPS-challenge compared to CLP-surviving, non-vagotomized mice. Moreover, vagus nerve stimulation in control mice diminished the LPS-induced TNFα responses while having no effect in CLP mice, suggesting constitutive activation of vagus nerve signaling in CLP-survivors. The percentage of splenic CD4+ ChAT-EGFP+ T cells that relay vagus signals to macrophages was increased in CLP-survivors compared to control mice, and vagotomy in CLP-survivors resulted in a reduced percentage of ChAT-EGFP+ cells. Moreover, CD4 knockout CLP-surviving mice exhibited an enhanced LPS-induced TNFα response compared to wild-type mice, supporting a functional role for CD4+ ChAT+ T cells in mediating inhibition of LPS-induced TNFα responses in CLP-survivors. Blockade of the cholinergic anti-inflammatory pathway with methyllcaconitine, an α7 nicotinic acetylcholine receptor antagonist, restored LPS-induced TNFα responses in CLP-survivors. Our study demonstrates that the vagus nerve is constitutively active in CLP-survivors and contributes to the immune impairment.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Bactérias Gram-Negativas/fisiologia , Infecções por Bactérias Gram-Positivas/imunologia , Sepse/imunologia , Nervo Vago/fisiologia , Animais , Ceco/cirurgia , Modelos Animais de Doenças , Infecções por Bactérias Gram-Positivas/metabolismo , Humanos , Tolerância Imunológica , Lipopolissacarídeos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sepse/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Nervo Vago/cirurgia , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
11.
Mol Med ; 24(1): 8, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30134814

RESUMO

BACKGROUND: The NLRP3 inflammasome, a cytosolic complex that mediates the maturation of IL-1ß and IL-18 as well as the release of high mobility group box 1 (HMGB1), contributes to the lethality of endotoxic shock. Ethyl pyruvate (EP) was previously shown to inhibit HMGB1 release and promote survival during endotoxemia and experimental sepsis. However, the underlying protective mechanism remains elusive. RESULT: EP dose-dependently inhibited the ATP-, nigericin-, alum-, and silica-induced caspase-1 activation and HMGB1 release in mouse macrophages. EP failed to inhibit DNA transfection- or Salmonella Typhimurium-induced caspase-1 activation and HMGB1 release. Mechanistically, EP significantly attenuated mitochondrial damage and cytoplasmic translocation of mitochondrial DNA, a known NLRP3 ligand, without influencing the potassium efflux, the lysosomal rupture or the production of mitochondrial reactive oxygen species (mtROS). CONCLUSION: Ethyl pyruvate acts as a novel NLRP3 inflammasome inhibitor that preserves the integrity of mitochondria during inflammation.


Assuntos
Inflamassomos/antagonistas & inibidores , Mitocôndrias/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Piruvatos/farmacologia , Animais , Humanos , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Células THP-1 , Fator de Necrose Tumoral alfa/metabolismo
12.
Proc Natl Acad Sci U S A ; 115(21): E4843-E4852, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29735654

RESUMO

The nervous system maintains physiological homeostasis through reflex pathways that modulate organ function. This process begins when changes in the internal milieu (e.g., blood pressure, temperature, or pH) activate visceral sensory neurons that transmit action potentials along the vagus nerve to the brainstem. IL-1ß and TNF, inflammatory cytokines produced by immune cells during infection and injury, and other inflammatory mediators have been implicated in activating sensory action potentials in the vagus nerve. However, it remains unclear whether neural responses encode cytokine-specific information. Here we develop methods to isolate and decode specific neural signals to discriminate between two different cytokines. Nerve impulses recorded from the vagus nerve of mice exposed to IL-1ß and TNF were sorted into groups based on their shape and amplitude, and their respective firing rates were computed. This revealed sensory neural groups responding specifically to TNF and IL-1ß in a dose-dependent manner. These cytokine-mediated responses were subsequently decoded using a Naive Bayes algorithm that discriminated between no exposure and exposures to IL-1ß and TNF (mean successful identification rate 82.9 ± 17.8%, chance level 33%). Recordings obtained in IL-1 receptor-KO mice were devoid of IL-1ß-related signals but retained their responses to TNF. Genetic ablation of TRPV1 neurons attenuated the vagus neural signals mediated by IL-1ß, and distal lidocaine nerve block attenuated all vagus neural signals recorded. The results obtained in this study using the methodological framework suggest that cytokine-specific information is present in sensory neural signals within the vagus nerve.


Assuntos
Interleucina-1beta/farmacologia , Receptores Tipo I de Interleucina-1/fisiologia , Células Receptoras Sensoriais/fisiologia , Canais de Cátion TRPV/fisiologia , Fator de Necrose Tumoral alfa/farmacologia , Nervo Vago/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Teorema de Bayes , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/efeitos dos fármacos , Nervo Vago/citologia , Nervo Vago/efeitos dos fármacos
13.
J Immunol ; 198(9): 3389-3397, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28416717

RESUMO

The field of immunology is principally focused on the molecular mechanisms by which hematopoietic cells initiate and maintain innate and adaptive immunity. That cornerstone of attention has been expanded by recent discoveries that neuronal signals occupy a critical regulatory niche in immunity. The discovery is that neuronal circuits operating reflexively regulate innate and adaptive immunity. One particularly well-characterized circuit regulating innate immunity, the inflammatory reflex, is dependent upon action potentials transmitted to the reticuloendothelial system via the vagus and splenic nerves. This field has grown significantly with the identification of several other reflexes regulating discrete immune functions. As outlined in this review, the delineation of these mechanisms revealed a new understanding of immunity, enabled a first-in-class clinical trial using bioelectronic devices to inhibit cytokines and inflammation in rheumatoid arthritis patients, and provided a mosaic view of immunity as the integration of hematopoietic and neural responses to infection and injury.


Assuntos
Alergia e Imunologia , Inflamação Neurogênica , Neurociências , Baço/inervação , Nervo Vago/imunologia , Imunidade Adaptativa , Animais , Citocinas/metabolismo , Humanos , Imunidade Inata , Neuroimunomodulação , Reflexo/imunologia
14.
Proc Natl Acad Sci U S A ; 113(29): 8284-9, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27382171

RESUMO

Rheumatoid arthritis (RA) is a heterogeneous, prevalent, chronic autoimmune disease characterized by painful swollen joints and significant disabilities. Symptomatic relief can be achieved in up to 50% of patients using biological agents that inhibit tumor necrosis factor (TNF) or other mechanisms of action, but there are no universally effective therapies. Recent advances in basic and preclinical science reveal that reflex neural circuits inhibit the production of cytokines and inflammation in animal models. One well-characterized cytokine-inhibiting mechanism, termed the "inflammatory reflex," is dependent upon vagus nerve signals that inhibit cytokine production and attenuate experimental arthritis severity in mice and rats. It previously was unknown whether directly stimulating the inflammatory reflex in humans inhibits TNF production. Here we show that an implantable vagus nerve-stimulating device in epilepsy patients inhibits peripheral blood production of TNF, IL-1ß, and IL-6. Vagus nerve stimulation (up to four times daily) in RA patients significantly inhibited TNF production for up to 84 d. Moreover, RA disease severity, as measured by standardized clinical composite scores, improved significantly. Together, these results establish that vagus nerve stimulation targeting the inflammatory reflex modulates TNF production and reduces inflammation in humans. These findings suggest that it is possible to use mechanism-based neuromodulating devices in the experimental therapy of RA and possibly other autoimmune and autoinflammatory diseases.


Assuntos
Artrite Reumatoide/terapia , Citocinas/antagonistas & inibidores , Estimulação do Nervo Vago , Adulto , Idoso , Artrite Reumatoide/sangue , Artrite Reumatoide/imunologia , Citocinas/sangue , Citocinas/imunologia , Epilepsia/terapia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
15.
Mol Med ; 21(1): 951-958, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26736178

RESUMO

Patients surviving sepsis develop anemia, but the molecular mechanism is unknown. Here we observed that mice surviving polymicrobial gram-negative sepsis develop hypochromic, microcytic anemia with reticulocytosis. The bone marrow of sepsis survivors accumulates polychromatophilic and orthochromatic erythroblasts. Compensatory extramedullary erythropoiesis in the spleen is defective during terminal differentiation. Circulating tumor necrosis factor (TNF) and interleukin (IL)-6 are elevated for 5 d after the onset of sepsis, and serum high-mobility group box 1 (HMGB1) levels are increased from d 7 until at least d 28. Administration of recombinant HMGB1 to healthy mice mediates anemia with extramedullary erythropoiesis and significantly elevated reticulocyte counts. Moreover, administration of anti-HMGB1 monoclonal antibodies after sepsis significantly ameliorates the development of anemia (hematocrit 48.5 ± 9.0% versus 37.4 ± 6.1%, p < 0.01; hemoglobin 14.0 ± 1.7 versus 11.7 ± 1.2 g/dL, p < 0.01). Together, these results indicate that HMGB1 mediates anemia by interfering with erythropoiesis, suggesting a potential therapeutic strategy for anemia in sepsis.

16.
Bioelectron Med ; 3: 7-17, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-30003120

RESUMO

The axons of the sensory, or afferent, vagus nerve transmit action potentials to the central nervous system in response to changes in the body's metabolic and physiological status. Recent advances in identifying neural circuits that regulate immune responses to infection, inflammation and injury have revealed that vagus nerve signals regulate the release of cytokines and other factors produced by macrophages. Here we record compound action potentials in the cervical vagus nerve of adult mice and reveal the specific activity that occurs following administration of the proinflammatory cytokines tumor necrosis factor (TNF) and interleukin 1ß (IL-1ß). Importantly, the afferent vagus neurograms generated by TNF exposure are abolished in double knockout mice lacking TNF receptors 1 and 2 (TNF-R1/2KO), whereas IL-1ß-specific neurograms are eliminated in knockout mice lacking IL-1ß receptor (IL-1RKO). Conversely, TNF neurograms are preserved in IL-1RKO mice, and IL-1ß neurograms are unchanged in TNF-R1/2KO mice. Analysis of the temporal dynamics and power spectral characteristics of afferent vagus neurograms for TNF and IL-1ß reveals cytokine-selective signals. The nodose ganglion contains the cell bodies of the sensory neurons whose axons run through the vagus nerve. The nodose neurons express receptors for TNF and IL-1ß, and we show that exposing them to TNF and IL-1ß significantly stimulates their calcium uptake. Together these results indicate that afferent vagus signals in response to cytokines provide a basic model of nervous system sensing of immune responses.

17.
J Exp Med ; 212(1): 5-14, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25559892

RESUMO

Innate immune receptors for pathogen- and damage-associated molecular patterns (PAMPs and DAMPs) orchestrate inflammatory responses to infection and injury. Secreted by activated immune cells or passively released by damaged cells, HMGB1 is subjected to redox modification that distinctly influences its extracellular functions. Previously, it was unknown how the TLR4 signalosome distinguished between HMGB1 isoforms. Here we demonstrate that the extracellular TLR4 adaptor, myeloid differentiation factor 2 (MD-2), binds specifically to the cytokine-inducing disulfide isoform of HMGB1, to the exclusion of other isoforms. Using MD-2-deficient mice, as well as MD-2 silencing in macrophages, we show a requirement for HMGB1-dependent TLR4 signaling. By screening HMGB1 peptide libraries, we identified a tetramer (FSSE, designated P5779) as a specific MD-2 antagonist preventing MD-2-HMGB1 interaction and TLR4 signaling. P5779 does not interfere with lipopolysaccharide-induced cytokine/chemokine production, thus preserving PAMP-mediated TLR4-MD-2 responses. Furthermore, P5779 can protect mice against hepatic ischemia/reperfusion injury, chemical toxicity, and sepsis. These findings reveal a novel mechanism by which innate systems selectively recognize specific HMGB1 isoforms. The results may direct toward strategies aimed at attenuating DAMP-mediated inflammation while preserving antimicrobial immune responsiveness.


Assuntos
Proteína HMGB1/metabolismo , Antígeno 96 de Linfócito/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Acetaminofen , Animais , Western Blotting , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/sangue , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Citocinas/sangue , Citocinas/farmacologia , Dissulfetos/metabolismo , Proteína HMGB1/farmacologia , Lipopolissacarídeos/farmacologia , Antígeno 96 de Linfócito/química , Antígeno 96 de Linfócito/genética , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Moleculares , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/farmacologia , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Interferência de RNA , Traumatismo por Reperfusão/sangue , Traumatismo por Reperfusão/metabolismo , Análise de Sobrevida
18.
Brain Behav Immun ; 44: 19-27, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25063706

RESUMO

Inflammatory conditions characterized by excessive immune cell activation and cytokine release, are associated with bidirectional immune system-brain communication, underlying sickness behavior and other physiological responses. The vagus nerve has an important role in this communication by conveying sensory information to the brain, and brain-derived immunoregulatory signals that suppress peripheral cytokine levels and inflammation. Brain muscarinic acetylcholine receptor (mAChR)-mediated cholinergic signaling has been implicated in this regulation. However, the possibility of controlling inflammation by peripheral administration of centrally-acting mAChR agonists is unexplored. To provide insight we used the centrally-acting M1 mAChR agonist xanomeline, previously developed in the context of Alzheimer's disease and schizophrenia. Intraperitoneal administration of xanomeline significantly suppressed serum and splenic TNF levels, alleviated sickness behavior, and increased survival during lethal murine endotoxemia. The anti-inflammatory effects of xanomeline were brain mAChR-mediated and required intact vagus nerve and splenic nerve signaling. The anti-inflammatory efficacy of xanomeline was retained for at least 20h, associated with alterations in splenic lymphocyte, and dendritic cell proportions, and decreased splenocyte responsiveness to endotoxin. These results highlight an important role of the M1 mAChR in a neural circuitry to spleen in which brain cholinergic activation lowers peripheral pro-inflammatory cytokines to levels favoring survival. The therapeutic efficacy of xanomeline was also manifested by significantly improved survival in preclinical settings of severe sepsis. These findings are of interest for strategizing novel therapeutic approaches in inflammatory diseases.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Agonistas Muscarínicos/farmacologia , Piridinas/farmacologia , Sepse/prevenção & controle , Baço/fisiologia , Tiadiazóis/farmacologia , Nervo Vago/fisiologia , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/uso terapêutico , Citocinas/fisiologia , Comportamento de Doença/efeitos dos fármacos , Injeções Intraperitoneais , Lipopolissacarídeos , Masculino , Camundongos Endogâmicos BALB C , Agonistas Muscarínicos/administração & dosagem , Agonistas Muscarínicos/uso terapêutico , Piridinas/administração & dosagem , Piridinas/uso terapêutico , Ratos Sprague-Dawley , Receptor Muscarínico M1/agonistas , Sepse/mortalidade , Baço/efeitos dos fármacos , Baço/inervação , Análise de Sobrevida , Tiadiazóis/administração & dosagem , Tiadiazóis/uso terapêutico , Fator de Necrose Tumoral alfa/sangue , Vagotomia
19.
Mol Med ; 20: 350-8, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-24849809

RESUMO

The mammalian immune system and the nervous system coevolved under the influence of cellular and environmental stress. Cellular stress is associated with changes in immunity and activation of the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome, a key component of innate immunity. Here we show that α7 nicotinic acetylcholine receptor (α7 nAchR)-signaling inhibits inflammasome activation and prevents release of mitochondrial DNA, an NLRP3 ligand. Cholinergic receptor agonists or vagus nerve stimulation significantly inhibits inflammasome activation, whereas genetic deletion of α7 nAchR significantly enhances inflammasome activation. Acetylcholine accumulates in macrophage cytoplasm after adenosine triphosphate (ATP) stimulation in an α7 nAchR-independent manner. Acetylcholine significantly attenuated calcium or hydrogen oxide-induced mitochondrial damage and mitochondrial DNA release. Together, these findings reveal a novel neurotransmitter-mediated signaling pathway: acetylcholine translocates into the cytoplasm of immune cells during inflammation and inhibits NLRP3 inflammasome activation by preventing mitochondrial DNA release.


Assuntos
Acetilcolina/metabolismo , Proteínas de Transporte/metabolismo , DNA Mitocondrial/antagonistas & inibidores , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Células Cultivadas , Agonistas Colinérgicos/farmacologia , Citocinas/metabolismo , DNA Mitocondrial/metabolismo , Células Dendríticas , Células HEK293 , Humanos , Lipopolissacarídeos/farmacologia , Macrófagos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR , Receptor Nicotínico de Acetilcolina alfa7/genética
20.
Am J Respir Cell Mol Biol ; 48(3): 280-7, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23087050

RESUMO

Mechanical ventilation with supraphysiological concentrations of oxygen (hyperoxia) is routinely used to treat patients with respiratory distress. However, a significant number of patients on ventilators exhibit enhanced susceptibility to infections and develop ventilator-associated pneumonia (VAP). Pseudomonas aeruginosa (PA) is one of the most common species of bacteria found in these patients. Previously, we demonstrated that prolonged exposure to hyperoxia can compromise the ability of alveolar macrophages (AMs), an essential part of the innate immunity, to phagocytose PA. This study sought to investigate the potential molecular mechanisms underlying hyperoxia-compromised innate immunity against bacterial infection in a murine model of PA pneumonia. Here, we show that exposure to hyperoxia (≥ 99% O2) led to a significant elevation in concentrations of airway high mobility group box-1 (HMGB1) and increased mortality in C57BL/6 mice infected with PA. Treatment of these mice with a neutralizing anti-HMGB1 monoclonal antibody (mAb) resulted in a reduction in bacterial counts, injury, and numbers of neutrophils in the lungs, and an increase in leukocyte phagocytic activity compared with mice receiving control mAb. This improved phagocytic function was associated with reduced concentrations of airway HMGB1. The correlation between phagocytic activity and concentrations of extracellular HMGB1 was also observed in cultured macrophages. These results indicate a pathogenic role for HMGB1 in hyperoxia-induced impairment with regard to a host's ability to clear bacteria and inflammatory lung injury. Thus, HMGB1 may provide a novel molecular target for improving hyperoxia-compromised innate immunity in patients with VAP.


Assuntos
Proteína HMGB1/metabolismo , Hiperóxia/metabolismo , Lesão Pulmonar/metabolismo , Lesão Pulmonar/microbiologia , Pneumonia Bacteriana/metabolismo , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Líquido da Lavagem Broncoalveolar/imunologia , Líquido da Lavagem Broncoalveolar/microbiologia , Proteína HMGB1/imunologia , Hiperóxia/imunologia , Hiperóxia/patologia , Imunidade Inata/imunologia , Leucócitos/imunologia , Leucócitos/metabolismo , Leucócitos/patologia , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Lesão Pulmonar/imunologia , Lesão Pulmonar/patologia , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/microbiologia , Macrófagos Alveolares/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/patologia , Fagocitose/imunologia , Fagocitose/fisiologia , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/microbiologia , Pneumonia Bacteriana/patologia , Pneumonia Associada à Ventilação Mecânica/imunologia , Pneumonia Associada à Ventilação Mecânica/metabolismo , Pneumonia Associada à Ventilação Mecânica/microbiologia , Pneumonia Associada à Ventilação Mecânica/patologia , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/imunologia , Respiração Artificial/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA