Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Catal ; 14(6): 4186-4201, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38510668

RESUMO

Systems integrating quantum dots with molecular catalysts are attracting ever more attention, primarily owing to their tunability and notable photocatalytic activity in the context of the hydrogen evolution reaction (HER) and CO2 reduction reaction (CO2RR). CuInS2 (CIS) quantum dots (QDs) are effective photoreductants, having relatively high-energy conduction bands, but their electronic structure and defect states often lead to poor performance, prompting many researchers to employ them with a core-shell structure. Molecular cobalt HER catalysts, on the other hand, often suffer from poor stability. Here, we have combined CIS QDs, surface-passivated with l-cysteine and iodide from a water-based synthesis, with two tetraazamacrocyclic cobalt complexes to realize systems which demonstrate high turnover numbers for the HER (up to >8000 per catalyst), using ascorbate as the sacrificial electron donor at pH = 4.5. Photoluminescence intensity and lifetime quenching data indicated a large degree of binding of the catalysts to the QDs, even with only ca. 1 µM each of QDs and catalysts, linked to an entirely static quenching mechanism. The data was fitted with a Poissonian distribution of catalyst molecules over the QDs, from which the concentration of QDs could be evaluated. No important difference in either quenching or photocatalysis was observed between catalysts with and without the carboxylate as a potential anchoring group. Femtosecond transient absorption spectroscopy confirmed ultrafast interfacial electron transfer from the QDs and the formation of the singly reduced catalyst (CoII state) for both complexes, with an average electron transfer rate constant of ≈ (10 ps)-1. These favorable results confirm that the core tetraazamacrocyclic cobalt complex is remarkably stable under photocatalytic conditions and that CIS QDs without inorganic shell structures for passivation can act as effective photosensitizers, while their smaller size makes them suitable for application in the sensitization of, inter alia, mesoporous electrodes.

2.
J Am Chem Soc ; 142(1): 274-282, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31760743

RESUMO

[Co(bapbpy)Cl]+ (bapbpy: 6,6'-bis(2-aminopyridyl)-2,2'-bipyridine) is a polypyridyl cobalt(II) complex bearing both a redox-active bipyridine ligand and pendant proton relays. This compound catalyzes electro-assisted H2 evolution in DMF with distinct mechanisms depending on the strength of the acid used as the proton source (pKa values ranging from 3.4 to 13.5 in DMF) and the applied potential. Electrochemical studies combining cyclic voltammetry and bulk electrolysis measurements enabled one to bring out four distinct catalytic processes. Where applicable, relevant kinetic information were obtained using either foot-of-the-wave analysis (FOWA) or analytical treatment of bulk electrolysis experiments. Among the different catalytic pathways identified in this study, a clear relationship between the catalyst performances and stability was evidenced. These results draw attention to a number of interesting considerations and may help in the development of future adequately designed catalysts.

3.
J Med Chem ; 62(9): 4456-4466, 2019 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-30942581

RESUMO

The human genome is replete with repetitive DNA sequences that can fold into thermodynamically stable secondary structures such as hairpins and quadruplexes. Cellular enzymes exist to cope with these structures whose stable accumulation would result in DNA damage through interference with DNA transactions such as transcription and replication. Therefore, the chemical stabilization of secondary DNA structures offers an attractive way to foster DNA transaction-associated damages to trigger cell death in proliferating cancer cells. While much emphasis has been recently given to DNA quadruplexes, we focused here on three-way DNA junctions (TWJ) and report on a strategy to identify TWJ-targeting agents through a combination of in vitro techniques (TWJ-screen, polyacrylamide gel electrophoresis, fluorescence resonance energy transfer-melting, electrospray ionization mass spectrometry, dialysis equilibrium, and sulforhodamine B assays). We designed a complete workflow and screened 1200 compounds to identify promising TWJ ligands selected on stringent criteria in terms of TWJ-folding ability, affinity, and selectivity.


Assuntos
DNA/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , DNA/genética , Eletroforese em Gel de Poliacrilamida , Transferência Ressonante de Energia de Fluorescência , Humanos , Ligantes , Conformação de Ácido Nucleico , Bibliotecas de Moléculas Pequenas/farmacologia , Espectrometria de Massas por Ionização por Electrospray
4.
Interface Focus ; 5(3): 20140083, 2015 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-26052420

RESUMO

Moving from homogeneous water-splitting photocatalytic systems to photoelectrochemical devices requires the preparation and evaluation of novel p-type transparent conductive photoelectrode substrates. We report here on the sensitization of polystyrene-block-poly-(2-vinylpyridine) (PS-b-P2VP) diblock copolymer-templated NiO films with an organic push-pull dye. The potential of these new templated NiO film preparations for photoelectrochemical applications is compared with NiO material templated by F108 triblock copolymers. We conclude that NiO films are promising materials for the construction of dye-sensitized photocathodes to be inserted into photoelectrochemical (PEC) cells. However, a combined effort at the interface between materials science and molecular chemistry, ideally funded within a Global Artificial Photosynthesis Project, is still needed to improve the overall performance of the photoelectrodes and progress towards economically viable PEC devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA