Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Biodivers ; 20(2): e202200689, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36565272

RESUMO

Leishmania amazonensis is the etiological agent of tegumentary leishmaniasis, a disease characterized by the emergence of cutaneous and mucocutaneous ulcerated lesions that can evolve into severe destruction of skin tissue. Treatment of the disease is often accompanied by high toxicity and variable efficacy. Essential oils stand out for having diverse pharmacological properties. Here, we screened a panel of fourteen essential oils for their anti-L. amazonensis activity, cytotoxicity, and chemical profile. Lippia sidoides (LSEO) and Piper callosum (PCEO) oils displayed the best anti-promastigote and anti-amastigote activities with IC50 of 31 and 21 µg/ml, respectively. PCEO was the safest oil with a desirable selectivity index >10. In addition, PCEO showed no cytotoxicity against the VERO line and erythrocytes. PCEO-treated amastigotes displayed mitochondrial membrane depolarization and high levels of intracellular ROS. Safrole (54.72 %) was the main component of PCEO. The results described here highlight the use of essential oils to combat tegumentary leishmaniasis.


Assuntos
Antiprotozoários , Leishmania , Leishmaniose , Óleos Voláteis , Piper , Humanos , Animais , Camundongos , Óleos Voláteis/química , Piper/química , Antiprotozoários/química , Leishmaniose/tratamento farmacológico , Camundongos Endogâmicos BALB C
2.
Malar J ; 14: 508, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26682750

RESUMO

BACKGROUND: The anti-malarials quinine and artemisinin were isolated from traditionally used plants (Cinchona spp. and Artemisia annua, respectively). The synthetic quinoline anti-malarials (e.g. chloroquine) and semi-synthetic artemisinin derivatives (e.g. artesunate) were developed based on these natural products. Malaria is endemic to the Amazon region where Plasmodium falciparum and Plasmodium vivax drug-resistance is of concern. There is an urgent need for new anti-malarials. Traditionally used Amazonian plants may provide new treatments for drug-resistant P. vivax and P. falciparum. Herein, the in vitro and in vivo antiplasmodial activity and cytotoxicity of medicinal plant extracts were investigated. METHODS: Sixty-nine extracts from 11 plant species were prepared and screened for in vitro activity against P. falciparum K1 strain and for cytotoxicity against human fibroblasts and two melanoma cell lines. Median inhibitory concentrations (IC50) were established against chloroquine-resistant P. falciparum W2 clone using monoclonal anti-HRPII (histidine-rich protein II) antibodies in an enzyme-linked immunosorbent assay. Extracts were evaluated for toxicity against murine macrophages (IC50) and selectivity indices (SI) were determined. Three extracts were also evaluated orally in Plasmodium berghei-infected mice. RESULTS: High in vitro antiplasmodial activity (IC50 = 6.4-9.9 µg/mL) was observed for Andropogon leucostachyus aerial part methanol extracts, Croton cajucara red variety leaf chloroform extracts, Miconia nervosa leaf methanol extracts, and Xylopia amazonica leaf chloroform and branch ethanol extracts. Paullinia cupana branch chloroform extracts and Croton cajucara red variety leaf ethanol extracts were toxic to fibroblasts and or melanoma cells. Xylopia amazonica branch ethanol extracts and Zanthoxylum djalma-batistae branch chloroform extracts were toxic to macrophages (IC50 = 6.9 and 24.7 µg/mL, respectively). Andropogon leucostachyus extracts were the most selective (SI >28.2) and the most active in vivo (at doses of 250 mg/kg, 71% suppression of P. berghei parasitaemia versus untreated controls). CONCLUSIONS: Ethnobotanical or ethnopharmacological reports describe the anti-malarial use of these plants or the antiplasmodial activity of congeneric species. No antiplasmodial activity has been demonstrated previously for the extracts of these plants. Seven plants exhibit in vivo and or in vitro anti-malarial potential. Future work should aim to discover the anti-malarial substances present.


Assuntos
Antimaláricos/farmacologia , Extratos Vegetais/farmacologia , Plantas/química , Plasmodium falciparum/efeitos dos fármacos , Animais , Antimaláricos/isolamento & purificação , Antimaláricos/toxicidade , Brasil , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Humanos , Concentração Inibidora 50 , Malária/tratamento farmacológico , Camundongos Endogâmicos BALB C , Parasitemia/tratamento farmacológico , Testes de Sensibilidade Parasitária , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/toxicidade , Plasmodium berghei/efeitos dos fármacos , Resultado do Tratamento
3.
Biomed Res Int ; 2014: 985171, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24818162

RESUMO

Currently available leishmaniasis treatments are limited due to severe side effects. Arrabidaea chica is a medicinal plant used in Brazil against several diseases. In this study, we investigated the effects of 5 fractions obtained from the crude hexanic extract of A. chica against Leishmania amazonensis and L. infantum, as well as on the interaction of these parasites with host cells. Promastigotes were treated with several concentrations of the fractions obtained from A. chica for determination of their minimum inhibitory concentration (MIC). In addition, the effect of the most active fraction (B2) on parasite's ultrastructure was analyzed by transmission electron microscopy. To evaluate the inhibitory activity of B2 fraction on Leishmania peptidases, parasites lysates were treated with the inhibitory and subinhibitory concentrations of the B2 fraction. The minimum inhibitory concentration of B2 fraction was 37.2 and 18.6 µg/mL for L. amazonensis and L. infantum, respectively. Important ultrastructural alterations as mitochondrial swelling with loss of matrix content and the presence of vesicles inside this organelle were observed in treated parasites. Moreover, B2 fraction was able to completely inhibit the peptidase activity of promastigotes at pH 5.5. The results presented here further support the use of A. chica as an interesting source of antileishmanial agents.


Assuntos
Antiprotozoários/farmacologia , Leishmania/efeitos dos fármacos , Leishmania/enzimologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Extratos Vegetais/farmacologia , Inibidores de Proteases/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Células Cultivadas , Leishmania/citologia , Leishmania/ultraestrutura , Estágios do Ciclo de Vida/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Camundongos , Mitocôndrias/ultraestrutura , Óxido Nítrico/biossíntese , Testes de Sensibilidade Parasitária
4.
Planta Med ; 80(7): 550-6, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24841967

RESUMO

The leaves and bark of Croton cajucara, a shrub from the Amazon region, have been used in folk medicine to treat diabetes, malaria, and gastrointestinal and liver disorders. The essential oil from the leaves, rich in linalool, presented antileishmanial and antimicrobial activities. A chemotype of this species was found with an essential oil rich in 7-hydroxycalamenene. During our studies of the C. cajucara essential oil, we isolated 7-hydroxycalamenene at > 98 % purity. The minimum inhibitory concentration of 7-hydroxycalamenene against Absidia cylindrospora, Cunninghamella elegans, Mucor circinelloides, Mucor circinelloides f. circinelloides, Mucor mucedo, Mucor plumbeus, Mucor ramosissimus, Rhizopus microsporus, Rhizopus oryzae, and Syncephalastrum racemosum ranged from 19.53 to 2500 µg/mL. The reference drug used, amphotericin B, presented a minimum inhibitory concentration ranging from 0.085 µg/mL to 43.87 µg/mL. 7-Hydroxycalamenene also altered spore differentiation and total lipid content. Ultrastructural analysis by transmission electron microscopy showed significant alterations in the cellular structure of R. oryzae.


Assuntos
Croton/química , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Óleos de Plantas/farmacologia , Rhizopus/efeitos dos fármacos , Sesquiterpenos/farmacologia , Zigomicose/tratamento farmacológico , Monoterpenos Acíclicos , Anfotericina B/farmacologia , Medicina Tradicional , Testes de Sensibilidade Microbiana , Monoterpenos/química , Monoterpenos/isolamento & purificação , Monoterpenos/farmacologia , Micélio/efeitos dos fármacos , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Casca de Planta/química , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Óleos de Plantas/química , Óleos de Plantas/isolamento & purificação , Rhizopus/crescimento & desenvolvimento , Rhizopus/ultraestrutura , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação
5.
BMC Complement Altern Med ; 13: 249, 2013 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-24088644

RESUMO

BACKGROUND: Visceral leishmaniasis is the most serious form of leishmaniasis and can be lethal if left untreated. Currently available treatments for these parasitic diseases are frequently associated to severe side effects. The leaves of Croton cajucara are used as an infusion in popular medicine to combat several diseases. Previous studies have demonstrated that the linalool-rich essential oil from C. cajucara (white sacaca) is extremely efficient against the tegumentary specie Leishmania amazonensis. In this study, we investigated the effects of the 7-hydroxycalamenene-rich essential oil from the leaves of C. cajucara (red sacaca) against Leishmania chagasi, as well as on the interaction of these parasites with host cells. METHODS: Promastigotes were treated with different concentrations of the essential oil for determination of its minimum inhibitory concentration (MIC). In addition, the effects of the essential oil on parasite ultrastructure were analyzed by transmission electron microscopy. To evaluate its efficacy against infected cells, mouse peritoneal macrophages infected with L. chagasi promastigotes were treated with the inhibitory and sub-inhibitory concentrations of the essential oil. RESULTS: The minimum inhibitory concentrations of the essential oil and its purified component 7-hydroxycalamenene against L. chagasi were 250 and 15.6 µg/mL, respectively. Transmission electron microscopy analysis revealed important nuclear and kinetoplastic alterations in L. chagasi promastigotes. Pre-treatment of macrophages and parasites with the essential oil reduced parasite/macrophage interaction by 52.8%, while it increased the production of nitric oxide by L. chagasi-infected macrophages by 80%. CONCLUSION: These results indicate that the 7-hydroxycalamenene-rich essential oil from C. cajucara is a promising source of leishmanicidal compounds.


Assuntos
Antiprotozoários/farmacologia , Croton/química , Leishmania/efeitos dos fármacos , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Sesquiterpenos/farmacologia , Animais , Antiprotozoários/química , Células Cultivadas , Feminino , Estágios do Ciclo de Vida/efeitos dos fármacos , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Camundongos , Testes de Sensibilidade Microbiana , Óxido Nítrico/metabolismo , Óleos Voláteis/química , Peptídeo Hidrolases/análise , Peptídeo Hidrolases/metabolismo , Extratos Vegetais/química , Sesquiterpenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA