Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EBioMedicine ; 103: 105093, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569318

RESUMO

BACKGROUND: Human restricted genes contribute to human specific traits in the immune system. CHRFAM7A, a uniquely human fusion gene, is a negative regulator of the α7 nicotinic acetylcholine receptor (α7 nAChR), the highest Ca2+ conductor of the ACh receptors implicated in innate immunity. Understanding the mechanism of how CHRFAM7A affects the immune system remains unexplored. METHODS: Two model systems are used, human induced pluripotent stem cells (iPSC) and human primary monocytes, to characterize α7 nAChR function, Ca2+ dynamics and decoders to elucidate the pathway from receptor to phenotype. FINDINGS: CHRFAM7A/α7 nAChR is identified as a hypomorphic receptor with mitigated Ca2+ influx and prolonged channel closed state. This shifts the Ca2+ reservoir from the extracellular space to the endoplasmic reticulum (ER) leading to Ca2+ dynamic changes. Ca2+ decoder small GTPase Rac1 is then activated, reorganizing the actin cytoskeleton. Observed actin mediated phenotypes include cellular adhesion, motility, phagocytosis and tissue mechanosensation. INTERPRETATION: CHRFAM7A introduces an additional, human specific, layer to Ca2+ regulation leading to an innate immune gain of function. Through the actin cytoskeleton it drives adaptation to the mechanical properties of the tissue environment leading to an ability to invade previously immune restricted niches. Human genetic diversity predicts profound translational significance as its understanding builds the foundation for successful treatments for infectious diseases, sepsis, and cancer metastasis. FUNDING: This work is supported in part by the Community Foundation for Greater Buffalo (Kinga Szigeti) and in part by NIH grant R01HL163168 (Yongho Bae).


Assuntos
Citoesqueleto de Actina , Sinalização do Cálcio , Células-Tronco Pluripotentes Induzidas , Receptor Nicotínico de Acetilcolina alfa7 , Humanos , Citoesqueleto de Actina/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/genética , Cálcio/metabolismo , Imunidade Inata , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Monócitos/metabolismo , Fagocitose , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/genética
2.
Interv Neuroradiol ; : 15910199231169597, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37157800

RESUMO

BACKGROUND: Several translational animal models have been described assessing intra-arterial (IA) treatments for malignant gliomas. We describe the first endovascular animal model that allows testing of IA drug delivery as a first-line treatment, which is difficult to do in actual patients. We report a unique protocol for vascular access and IA delivery in the rat model that, unlike prior reports, does not require direct puncture and opening of proximal cerebrovasculature which carries risk of ischemia in the animal brain post-delivery. METHODS: Wistar rats underwent left femoral artery catherization with a Balt Magic 1.2F catheter or Marathon Flow directed 1.5F Microcatheter with an Asahi Chikai 0.008 micro-guidewire which was navigated to the left internal carotid artery under x-ray. 25% mannitol was administered to test blood brain barrier breakdown (BBBB). Additional rats were implanted with C6 glioma cells in the left frontal lobe. C6 Glioma-Implanted Rats (C6GRs) were monitored for overall survival and tumor growth. Tumor volumes from MRI images were calculated utilizing 3D slicer. Additional rats underwent femoral artery catheterization with Bevacizumab, carboplatin, or irinotecan injected into the left internal carotid artery to test feasibility and safety. RESULTS: A successful endovascular access and BBBB protocol was established. BBBB was confirmed with positive Evans blue staining. 10 rats were successfully implanted with C6 gliomas with confirmed growths on MRI. Overall survival was 19.75 ± 2.21 days. 5 rats were utilized for the development of our femoral catheterization protocol and BBBB testing. With regards to IA chemotherapy dosage testing, control rats tolerated targeted 10 mg/kg of bevascizumab, 2.4 mg/kg of carboplatin, and 15 mg/kg of irinotecan IA ICA injections without any complications. CONCLUSIONS: We present the first endovascular IA rat glioma model that allows selective catheterization of the intracranial vasculature and assessment of IA therapies for gliomas without need for access and sacrifice of proximal cerebrovasculature.

3.
Mol Pharm ; 20(2): 987-996, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36626167

RESUMO

Despite the understanding that renal clearance is pivotal for driving the pharmacokinetics of numerous therapeutic proteins and peptides, the specific processes that occur following glomerular filtration remain poorly defined. For instance, sites of catabolism within the proximal tubule can occur at the brush border, within lysosomes following endocytosis, or even within the tubule lumen itself. The objective of the current study was to address these limitations and develop methodology to study the kidney disposition of a model therapeutic protein. Exenatide is a peptide used to treat type 2 diabetes mellitus. Glomerular filtration and ensuing renal catabolism have been shown to be its principal clearance pathway. Here, we designed and validated a Förster resonance energy transfer-quenched exenatide derivative to provide critical information on the renal handling of exenatide. A combination of in vitro techniques was used to confirm substantial fluorescence quenching of intact peptide that was released upon proteolytic cleavage. This evaluation was then followed by an assessment of the in vivo disposition of quenched exenatide directly within kidneys of living rats via intravital two-photon microscopy. Live imaging demonstrated rapid glomerular filtration and identified exenatide metabolism occurred within the subapical regions of the proximal tubule epithelia, with subsequent intracellular trafficking of cleaved fragments. These results provide a novel examination into the real-time, intravital disposition of a protein therapeutic within the kidney and offer a platform to build upon for future work.


Assuntos
Diabetes Mellitus Tipo 2 , Exenatida , Rim , Animais , Ratos , Diabetes Mellitus Tipo 2/metabolismo , Exenatida/metabolismo , Exenatida/farmacocinética , Rim/metabolismo , Túbulos Renais Proximais/metabolismo , Peptídeos/metabolismo
4.
J Neurointerv Surg ; 15(e1): e33-e40, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35750484

RESUMO

BACKGROUND: Determining stroke etiology is crucial for secondary prevention, but intensive workups fail to classify ~30% of strokes that are cryptogenic. OBJECTIVE: To examine the hypothesis that the transcriptomic profiles of clots retrieved during mechanical thrombectomy are unique to strokes of different subtypes. METHODS: We isolated RNA from the clots of 73 patients undergoing mechanical thrombectomy. Samples of sufficient quality were subjected to 100-cycle, paired-end RNAseq, and transcriptomes with less than 10 million unique reads were excluded from analysis. Significant differentially expressed genes (DEGs) between subtypes (defined by the Trial of Org 10 172 in Acute Stroke Treatment) were identified by expression analysis in edgeR. Gene ontology enrichment analysis was used to study the biologic differences between stroke etiologies. RESULTS: In all, 38 clot transcriptomes were analyzed; 6 from large artery atherosclerosis (LAA), 21 from cardioembolism (CE), 5 from strokes of other determined origin, and 6 from cryptogenic strokes. Among all comparisons, there were 816 unique DEGs, 174 of which were shared by at least two comparisons, and 20 of which were shared by all three. Gene ontology analysis showed that CE clots reflected high levels of inflammation, LAA clots had greater oxidoreduction and T-cell processes, and clots of other determined origin were enriched for aberrant platelet and hemoglobin-related processes. Principal component analysis indicated separation between these subtypes and showed cryptogenic samples clustered among several different groups. CONCLUSIONS: Expression profiles of stroke clots were identified between stroke etiologies and reflected different biologic responses. Cryptogenic thrombi may be related to multiple etiologies.


Assuntos
Produtos Biológicos , Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Trombose , Humanos , Transcriptoma/genética , AVC Isquêmico/complicações , Trombectomia/efeitos adversos , Trombose/terapia , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/cirurgia , Acidente Vascular Cerebral/complicações , Isquemia Encefálica/genética , Isquemia Encefálica/cirurgia , Isquemia Encefálica/complicações
5.
JCI Insight ; 6(11)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-33914709

RESUMO

Patients with chronic kidney disease (CKD) and end-stage renal disease suffer from increased cardiovascular events and cardiac mortality. Prior studies have demonstrated that a portion of this enhanced risk can be attributed to the accumulation of microbiota-derived toxic metabolites, with most studies focusing on the sulfonated form of p-cresol (PCS). However, unconjugated p-cresol (uPC) itself was never assessed due to rapid and extensive first-pass metabolism that results in negligible serum concentrations of uPC. These reports thus failed to consider the host exposure to uPC prior to hepatic metabolism. In the current study, not only did we measure the effect of altering the intestinal microbiota on lipid accumulation in coronary arteries, but we also examined macrophage lipid uptake and handling pathways in response to uPC. We found that atherosclerosis-prone mice fed a high-fat diet exhibited significantly higher coronary artery lipid deposits upon receiving fecal material from CKD mice. Furthermore, treatment with uPC increased total cholesterol, triglycerides, and hepatic and aortic fatty deposits in non-CKD mice. Studies employing an in vitro macrophage model demonstrated that uPC exposure increased apoptosis whereas PCS did not. Additionally, uPC exhibited higher potency than PCS to stimulate LDL uptake and only uPC induced endocytosis- and pinocytosis-related genes. Pharmacological inhibition of varying cholesterol influx and efflux systems indicated that uPC increased macrophage LDL uptake by activating macropinocytosis. Overall, these findings indicate that uPC itself had a distinct effect on macrophage biology that might have contributed to increased cardiovascular risk in patients with CKD.


Assuntos
Aorta/metabolismo , LDL-Colesterol/metabolismo , Doença da Artéria Coronariana/metabolismo , Cresóis/metabolismo , Microbioma Gastrointestinal , Fígado/metabolismo , Macrófagos/metabolismo , Pinocitose/fisiologia , Insuficiência Renal Crônica/metabolismo , Animais , Aorta/efeitos dos fármacos , Aorta/patologia , Colesterol/metabolismo , LDL-Colesterol/efeitos dos fármacos , Doença da Artéria Coronariana/patologia , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/metabolismo , Vasos Coronários/patologia , Cresóis/farmacologia , Dieta Hiperlipídica , Transplante de Microbiota Fecal , Falência Renal Crônica/metabolismo , Falência Renal Crônica/microbiologia , Fígado/efeitos dos fármacos , Fígado/patologia , Macrófagos/efeitos dos fármacos , Camundongos , Pinocitose/efeitos dos fármacos , Insuficiência Renal Crônica/microbiologia , Triglicerídeos/metabolismo
6.
Macromol Biosci ; 21(1): e2000358, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33283480

RESUMO

A nanoformulation composed of curdlan, a linear polysaccharide of 1,3-ß-linked d-glucose units, hydrogen bonded to poly(γ -glutamic acid) (PGA), was developed to stimulate macrophage. Curdlan/PGA nanoparticles (C-NP) are formulated by physically blending curdlan (0.2 mg mL-1 in 0.4 m NaOH) with PGA (0.8 mg mL-1 ). Forster resonance energy transfer (FRET) analysis demonstrates a heterospecies interpolymer complex formed between curdlan and PGA. The 1 H-NMR spectra display significant peak broadening as well as downfield chemical shifts of the hydroxyl proton resonances of curdlan, indicating potential intermolecular hydrogen bonding interactions. In addition, the cross peaks in 1 H-1 H 2D-NOESY suggest intermolecular associations between the OH-2/OH-4 hydroxyl groups of curdlan and the carboxylic-/amide-groups of PGA via hydrogen bonding. Intracellular uptake of C-NP occurs over time in human monocyte-derived macrophage (MDM). Furthermore, C-NP nanoparticles dose-dependently increase gene expression for TNF-α, IL-6, and IL-8 at 24 h in MDM. C-NP nanoparticles also stimulate the release of IL-lß, MCP-1, TNF-α, IL-8, IL-12p70, IL-17, IL-18, and IL-23 from MDM. Overall, this is the first demonstration of a simplistic nanoformulation formed by hydrogen bonding between curdlan and PGA that modulates cytokine gene expression and release of cytokines from MDM.


Assuntos
Imunomodulação/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Nanopartículas/química , beta-Glucanas/farmacologia , Quimiocinas/classificação , Quimiocinas/genética , Citocinas/classificação , Citocinas/genética , Transferência Ressonante de Energia de Fluorescência , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hidrogênio/química , Macrófagos/imunologia , Macrófagos/metabolismo , Ácido Poliglutâmico/química , Ácido Poliglutâmico/farmacologia , beta-Glucanas/química
7.
Transl Psychiatry ; 9(1): 59, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30710073

RESUMO

The α7 nicotinic acetylcholine receptor (α7nAChR) has been a promising target for diseases affecting cognition and higher cortical functions; however, the effect observed in animal models failed to translate into human clinical trials identifying a translational gap. CHRFAM7A is a human-specific fusion gene with properties that enable incorporation into the α7nAChR and, being human specific, CHRFAM7A effect was not accounted for in preclinical studies. We hypothesized that CHRFAM7A may account for this translational gap and understanding its function may offer novel insights when exploring α7nAChR as a drug target. CHRFAM7A is present in different copy number variations (CNV) in the human genome with high frequency. To study the functional consequences of the presence of the CHRFAM7A, two induced pluripotent stem cell (iPSC) lines (0 copy and 1 copy direct) were developed. The 0 copy line was rescued with CHRFAM7A transfection to control for genetic heterogeneity. As readouts for genotype-phenotype correlation, α7nAChR synaptic transmission and amyloid beta 1-42 (Aß1-42) uptake were tested. Synaptic transmission in the presence of CHRFAM7A demonstrated that PNU-modulated desensitization of α7nAChR currents increased as a function of CHRFAM7A dosage. CHRFAM7A mitigated the dose response of Aß1-42 uptake suggesting a protective effect beyond physiological concentrations. Furthermore, in the presence of CHRFAM7A Aß1-42 uptake activated neuronal interleukin 1ß (IL-1ß) and tumor necrosis factor α (TNF-α) without activating the canonical inflammasome pathway. Lead optimization may identify more potent molecules when the screen has a model harboring CHRFAM7A. Incorporating pharmacogenetics into clinical trials may enhance signals in efficacy measures.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Peptídeos beta-Amiloides/administração & dosagem , Peptídeos beta-Amiloides/metabolismo , Diferenciação Celular , Células Cultivadas , Expressão Gênica , Células HEK293 , Humanos , Inflamação/metabolismo , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/metabolismo , Transmissão Sináptica
8.
Am J Physiol Renal Physiol ; 315(5): F1191-F1207, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29949391

RESUMO

The megalin/cubilin complex is responsible for the majority of serum protein reclamation in the proximal tubules. The current study examined if decreases in their renal expression, along with the albumin recycling protein neonatal Fc receptor (FcRn) could account for proteinuria/albuminuria in the Zucker diabetic fatty rat model of type 2 diabetes. Immunoblots of renal cortex samples obtained at worsening disease stages demonstrated no loss in megalin, cubilin, or FcRn, even when proteinuria was measured. Additionally, early diabetic rats exhibited significantly increased renal megalin expression when compared with controls (adjusted P < 0.01). Based on these results, the ability of insulin to increase megalin was examined in a clonal subpopulation of the opossum kidney proximal tubule cell line. Insulin treatments (24 h, 100 nM) under high glucose conditions significantly increased megalin protein ( P < 0.0001), mRNA ( P < 0.0001), and albumin endocytosis. The effect on megalin expression was prevented with inhibitors against key effectors of insulin intracellular signaling, phosphatidylinositide 3-kinase and Akt. Studies using rapamycin to inhibit the mechanistic target of rapamycin complex 1 (mTORC1) resulted in a loss of insulin-induced megalin expression. However, subsequent evaluation demonstrated these effects were independent of initial mTORC1 suppression. The presented results provide insight into the expression of megalin, cubilin, and FcRn in type 2 diabetes, which may be impacted by elevated insulin and glucose. Furthermore, proximal tubule endocytic activity in early diabetics may be enhanced, a process that could have a significant role in proteinuria-induced renal damage.


Assuntos
Albuminúria/metabolismo , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Nefropatias Diabéticas/metabolismo , Insulina/farmacologia , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Albuminúria/etiologia , Albuminúria/genética , Albuminúria/fisiopatologia , Animais , Células Cultivadas , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/fisiopatologia , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/fisiopatologia , Modelos Animais de Doenças , Progressão da Doença , Endocitose/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Túbulos Renais Proximais/fisiopatologia , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Masculino , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Gambás , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Zucker , Receptores de Superfície Celular/metabolismo , Receptores Fc/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Regulação para Cima
9.
Kidney Int ; 87(5): 930-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25565310

RESUMO

In chronic serum sickness, glomerular immune complexes form, yet C57BL/6 mice do not develop glomerulonephritis unless complement factor H (CfH) is absent, indicating the relevance of complement regulation. Complement receptor 3 (CD11b) and Fcγ receptors on leukocytes, and CfH on platelets, can bind immune complexes. Here we induced immune complex-mediated glomerulonephritis in CfH(-/-) mice chimeric for wild-type, CfH(-/-), CD11b(-/-), or FcRγ(-/-) bone marrow stem cells. Glomerulonephritis was worse in CD11b(-/-) chimeras compared with all others, whereas disease in FcRγ(-/-) and wild-type chimeras was comparable. Disease tracked strongly with humoral immune responses, but not glomerular immune complex deposits. Interstitial inflammation with M1 macrophages strongly correlated with glomerulonephritis scores. CD11b(-/-) chimeras had significantly more M1 macrophages and CD4(+) T cells. The renal dendritic cell populations originating from bone marrow-derived CD11c(+) cells were similar in all experimental groups. CD11b(+) cells bearing colony-stimulating factor 1 receptor were present in kidneys, including CD11b(-/-) chimeras; these cells correlated negatively with glomerulonephritis scores. Thus, experimental immune complex-mediated glomerulonephritis is associated with accumulation of M1 macrophages and CD4(+) T cells in kidneys and functional renal insufficiency. Hence, CD11b on mononuclear cells is instrumental in generating an anti-inflammatory response in the inflamed kidney.


Assuntos
Antígeno CD11b/metabolismo , Fator H do Complemento/metabolismo , Glomerulonefrite/imunologia , Leucócitos/metabolismo , Receptores de IgG/metabolismo , Animais , Complexo Antígeno-Anticorpo/metabolismo , Apoferritinas/imunologia , Medula Óssea/metabolismo , Antígeno CD11b/genética , Antígenos CD18/metabolismo , Fator H do Complemento/genética , Glomerulonefrite/metabolismo , Imunoglobulina G/metabolismo , Camundongos Endogâmicos C57BL , Receptor da Anafilatoxina C5a/metabolismo , Receptores de IgG/genética , Doença do Soro/complicações
10.
Clin Dev Immunol ; 2013: 836989, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24489579

RESUMO

Using a reversible UUO model (rUUO), we have demonstrated that C57BL/6 mice are susceptible to development of CKD after obstruction-mediated kidney injury while BALB/c mice are resistant. We hypothesized that selective systemic depletion of subpopulations of inflammatory cells during injury or repair might alter the development of CKD. To investigate the impact of modification of Th-lymphocytes or macrophage responses on development of CKD after rUUO, we used an anti-CD4 antibody (GK1.5) or liposomal clodronate to systemically deplete CD4(+) T cells or monocyte/macrophages, respectively, prior to and throughout the rUUO protocol. Flow cytometry and immunohistochemistry confirmed depletion of target cell populations. C57BL/6 mice treated with the GK1.5 antibody to deplete CD4(+) T cells had higher BUN levels and delayed recovery from rUUO. Treatment of C57BL/6 mice with liposomal clodronate to deplete monocyte/macrophages led to a relative protection from CKD as assessed by BUN values. Our results demonstrate that modulation of the inflammatory response during injury and repair altered the susceptibility of C57BL/6 mice to development of CKD in our rUUO model.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Depleção Linfocítica , Macrófagos/imunologia , Monócitos/imunologia , Insuficiência Renal Crônica/imunologia , Insuficiência Renal Crônica/patologia , Animais , Atrofia , Linfócitos T CD4-Positivos/metabolismo , Modelos Animais de Doenças , Fibrose , Imunofenotipagem , Terapia de Imunossupressão/métodos , Macrófagos/metabolismo , Masculino , Camundongos , Monócitos/metabolismo , Fenótipo , Obstrução Ureteral
11.
Kidney Int ; 82(9): 961-8, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22832515

RESUMO

Chronic serum sickness leads to the formation of glomerular immune complexes; however, C57BL/6 mice do not develop glomerulonephritis unless complement factor H (CFH) is absent from the plasma. Here we studied the role for C5a receptor (R) in this setting. The exaggerated humoral immune response in CFH(-/-) mice was normalized in CFH(-/-)C5aR(-/-) double knockout mice, highlighting the C5aR dependence. The CFH knockout mice developed proliferative glomerulonephritis with endocapillary F4/80+ macrophage infiltration, a process reduced in the double knockout mice. There was no interstitial inflammation by histologic criteria or flow cytometry for F4/80+ Ly6C(hi)CCR2(hi) inflammatory macrophages. There were, however, more interstitial CD3+ CD4+ T lymphocytes in CFH knockout mice with chronic serum sickness, while double knockout mice had greater than 5-fold more Ly6C(lo)CCR2(lo) anti-inflammatory macrophages compared to the CFH knockout mice. Mice lacking C5aR were significantly protected from functional renal disease as assessed by blood urea nitrogen levels. Thus, IgG- and iC3b-containing immune complexes are not inflammatory in C57BL/6 mice. Yet when these mice lack CFH, sufficient C3b persists in glomeruli to generate C5a and activate C5aR.


Assuntos
Glomerulonefrite/imunologia , Doenças do Complexo Imune/imunologia , Nefropatias/imunologia , Receptor da Anafilatoxina C5a/genética , Receptor da Anafilatoxina C5a/imunologia , Animais , Fator H do Complemento/deficiência , Fator H do Complemento/genética , Fator H do Complemento/imunologia , Modelos Animais de Doenças , Glomerulonefrite/genética , Glomerulonefrite/patologia , Doenças da Deficiência Hereditária de Complemento , Doenças do Complexo Imune/genética , Doenças do Complexo Imune/patologia , Rim/imunologia , Rim/patologia , Nefropatias/genética , Nefropatias/patologia , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doença do Soro/genética , Doença do Soro/imunologia , Doença do Soro/patologia , Linfócitos T/imunologia , Linfócitos T/patologia
12.
J Biol Chem ; 286(18): 16063-73, 2011 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-21454593

RESUMO

Basophils mediate many of their biological functions by producing IL-4. However, it is unknown how the Il4 gene is regulated in basophils. Here, we report that CCAAT/enhancer-binding protein α (C/EBPα), a major myeloid transcription factor, was highly expressed in basophils. We show that C/EBPα selectively activated Il4 promoter-luciferase reporter gene transcription in response to IgE cross-linking, but C/EBPα did not activate other known Th2 or mast cell enhancers. We found that the PI3K pathway and calcineurin were essential in C/EBPα-driven Il4 promoter-luciferase gene transcription. Our mutation analyses revealed that C/EBPα drove Il4 promoter-luciferase activity depending on its DNA binding domain. Mutation of the C/EBPα-binding site in the Il4 promoter region abolished C/EBPα-driven Il4 promoter-luciferase activity. Our results further showed that a mutation in nuclear factor of activated T cells (NFAT)-binding sites in the Il4 promoter also negated C/EBPα-driven Il4 promoter-luciferase activity. Our study demonstrates that C/EBPα, in cooperation with NFAT, directly regulates Il4 gene transcription.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Regulação da Expressão Gênica/fisiologia , Capeamento Imunológico/fisiologia , Interleucina-4/biossíntese , Receptores de IgE/metabolismo , Transcrição Gênica/fisiologia , Animais , Basófilos/citologia , Basófilos/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Linhagem Celular Tumoral , Interleucina-4/genética , Mastócitos/citologia , Mastócitos/metabolismo , Camundongos , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Ratos , Receptores de IgE/genética , Elementos de Resposta/fisiologia , Células Th2/citologia , Células Th2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA