Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Microbiol ; 22(5): e13158, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31895486

RESUMO

Staphylococcus aureus is one of the earliest pathogens that persists the airways of cystic fibrosis (CF) patients and contributes to increased inflammation and decreased lung function. In contrast to other staphylococci, S. aureus possesses two superoxide dismutases (SODs), SodA and SodM, with SodM being unique to S. aureus. Both SODs arm S. aureus for its fight against oxidative stress, a by-product of inflammatory reactions. Despite complex investigations, it is still unclear if both enzymes are crucial for the special pathogenicity of S. aureus. To investigate the role of both SODs during staphylococcal persistence in CF airways, we analysed survival and gene expression of S. aureus CF isolates and laboratory strains in different CF-related in vitro and ex vivo settings. Bacteria located in inflammatory and oxidised CF sputum transcribed high levels of sodA and sodM. Especially expression values of sodM were remarkably higher in CF sputum than in bacterial in vitro cultures. Interestingly, also S. aureus located in airway epithelial cells expressed elevated transcript numbers of both SODs, indicating that S. aureus is exposed to oxidative stress at various sites within CF airways. Both enzymes promoted survival of S. aureus during polymorphonuclear leukocyte killing and seem to act compensatory, thereby giving evidence that the interwoven interaction of SodA and SodM contributes to S. aureus virulence and facilitates S. aureus persistence within CF airways.


Assuntos
Proteínas de Bactérias/metabolismo , Fibrose Cística/microbiologia , Estresse Oxidativo , Sistema Respiratório/microbiologia , Staphylococcus aureus/enzimologia , Superóxido Dismutase/metabolismo , Células A549 , Proteínas de Bactérias/genética , Células Epiteliais/microbiologia , Fibrose , Regulação Bacteriana da Expressão Gênica , Humanos , Superóxido Dismutase/genética , Transcriptoma , Virulência , Fatores de Virulência
2.
Nat Chem ; 12(2): 145-158, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31844194

RESUMO

New drugs are desperately needed to combat methicillin-resistant Staphylococcus aureus (MRSA) infections. Here, we report screening commercial kinase inhibitors for antibacterial activity and found the anticancer drug sorafenib as major hit that effectively kills MRSA strains. Varying the key structural features led to the identification of a potent analogue, PK150, that showed antibacterial activity against several pathogenic strains at submicromolar concentrations. Furthermore, this antibiotic eliminated challenging persisters as well as established biofilms. PK150 holds promising therapeutic potential as it did not induce in vitro resistance, and shows oral bioavailability and in vivo efficacy. Analysis of the mode of action using chemical proteomics revealed several targets, which included interference with menaquinone biosynthesis by inhibiting demethylmenaquinone methyltransferase and the stimulation of protein secretion by altering the activity of signal peptidase IB. Reduced endogenous menaquinone levels along with enhanced levels of extracellular proteins of PK150-treated bacteria support this target hypothesis. The associated antibiotic effects, especially the lack of resistance development, probably stem from the compound's polypharmacology.


Assuntos
Antibacterianos/uso terapêutico , Benzodioxóis/uso terapêutico , Reposicionamento de Medicamentos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Sorafenibe/análogos & derivados , Sorafenibe/uso terapêutico , Animais , Antibacterianos/síntese química , Antibacterianos/farmacocinética , Autólise/induzido quimicamente , Benzodioxóis/síntese química , Benzodioxóis/farmacocinética , Biofilmes/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Staphylococcus aureus Resistente à Meticilina/fisiologia , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Simulação de Dinâmica Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Sorafenibe/farmacocinética , Relação Estrutura-Atividade
3.
Front Immunol ; 10: 2552, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31772562

RESUMO

Staphylococcus aureus is one of the first and most prevalent pathogens cultured from the airways of cystic fibrosis (CF) patients, which can persist there for extended periods. Airway infections in CF patients are characterized by a strong inflammatory response of highly recruited neutrophils. One killing mechanism of neutrophils is the formation of neutrophil extracellular traps (NETs), which capture and eradicate bacteria by extracellular fibers of neutrophil chromatin decorated with antimicrobial granule proteins. S. aureus secretes nuclease, which can degrade NETs. We hypothesized, that S. aureus adapts to the airways of CF patients during persistent infection by escaping from NET-mediated killing via an increase of nuclease activity. Sputum samples of CF patients with chronic S. aureus infection were visualized by confocal microscopy after immuno-fluorescence staining for NET-specific markers, S. aureus bacteria and overall DNA structures. Nuclease activity was analyzed in sequential isogenic long persisting S. aureus isolates, as confirmed by whole genome sequencing, from an individual CF patient using a FRET-based nuclease activity assay. Additionally, some of these isolates were selected and analyzed by qRT-PCR to determine the expression of nuc1 and regulators of interest. NET-killing assays were performed with clinical S. aureus isolates to evaluate killing and bacterial survival depending on nuclease activity. To confirm the role of nuclease during NET-mediated killing, a clinical isolate with low nuclease activity was transformed with a nuclease expression vector (pCM28nuc). Furthermore, two sputa from an individual CF patient were subjected to RNA-sequence analysis to evaluate the activity of nuclease in vivo. In sputa, S. aureus was associated to extracellular DNA structures. Nuclease activity in clinical S. aureus isolates increased in a time-and phenotype-dependent manner. In the clinical isolates, the expression of nuc1 was inversely correlated to the activity of agr and was independent of saeS. NET-mediated killing was significantly higher in S. aureus isolates with low compared to isolates with high nuclease activity. Importantly, transformation of the clinical isolate with low nuclease activity with pCM28nuc conferred protection against NET-mediated killing confirming the beneficial role of nuclease for protection against NETs. Also, nuclease expression in in vivo sputa was high, which underlines the important role of nuclease within the highly inflamed CF airways. In conclusion, our data show that S. aureus adapts to the neutrophil-rich environment of CF airways with increasing nuclease expression most likely to avoid NET-killing during long-term persistence.


Assuntos
Proteínas de Bactérias/imunologia , Fibrose Cística/imunologia , Desoxirribonucleases/imunologia , Armadilhas Extracelulares/imunologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/enzimologia , Proteínas de Bactérias/genética , Fibrose Cística/microbiologia , Desoxirribonucleases/genética , Humanos , Escarro/imunologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética
4.
Environ Microbiol ; 18(7): 2259-71, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27207744

RESUMO

The human nasal passage, from the anterior nares through the nasal vestibule to the nasal cavities, is an important habitat for opportunistic pathogens and commensals alike. This work sampled four different anatomical regions within the human nasal passage across a large cohort of individuals (n = 79) comprising individuals suffering from chronic nasal inflammation clinically known as chronic rhinosinusitis (CRS) and individuals not suffering from inflammation (CRS-free). While individuals had their own unique bacterial fingerprint that was consistent across the anatomical regions, these bacterial fingerprints formed into distinct delineated groups comprising core bacterial members, which were consistent across all four swabbed anatomical regions irrespective of health status. The most significant observed pattern was the difference between the global bacterial profiles of swabbed and tissue biopsy samples from the same individuals, being also consistent across different anatomical regions. Importantly, no statistically significant differences could be observed concerning the global bacterial communities, any of the bacterial species or the range of diversity indices used to compare between CRS and CRS-free individuals, and between two CRS phenotypes (without nasal polyps and with nasal polyps). Thus, the role of bacteria in the pathogenesis of sinusitis remains uncertain.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Microbiota , Cavidade Nasal/microbiologia , Rinite/microbiologia , Sinusite/microbiologia , Adulto , Idoso , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Doença Crônica , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Cavidade Nasal/imunologia , Rinite/imunologia , Sinusite/imunologia , Adulto Jovem
5.
Appl Environ Microbiol ; 82(1): 167-73, 2016 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26475106

RESUMO

Pseudomonas veronii 1YdBTEX2, a benzene and toluene degrader, and Pseudomonas veronii 1YB2, a benzene degrader, have previously been shown to be key players in a benzene-contaminated site. These strains harbor unique catabolic pathways for the degradation of benzene comprising a gene cluster encoding an isopropylbenzene dioxygenase where genes encoding downstream enzymes were interrupted by stop codons. Extradiol dioxygenases were recruited from gene clusters comprising genes encoding a 2-hydroxymuconic semialdehyde dehydrogenase necessary for benzene degradation but typically absent from isopropylbenzene dioxygenase-encoding gene clusters. The benzene dihydrodiol dehydrogenase-encoding gene was not clustered with any other aromatic degradation genes, and the encoded protein was only distantly related to dehydrogenases of aromatic degradation pathways. The involvement of the different gene clusters in the degradation pathways was suggested by real-time quantitative reverse transcription PCR.


Assuntos
Proteínas de Bactérias/metabolismo , Benzeno/metabolismo , Família Multigênica , Pseudomonas/enzimologia , Pseudomonas/genética , Proteínas de Bactérias/genética , Biocatálise , Biodegradação Ambiental , Dioxigenases/genética , Dioxigenases/metabolismo , Dados de Sequência Molecular , Oxigenases/genética , Oxigenases/metabolismo , Filogenia , Pseudomonas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA