Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Hypertens ; 31(2): 303-11, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23303355

RESUMO

OBJECTIVES: Insulin is recognized to increase renal salt reabsorption in the distal nephron and hyperinsulinemic states have been shown to be associated with increased expression of the renal NaCl cotransporter (NCC). However, the effect of insulin on NCC functional activity has not been reported. METHODS: Using a heterologous expression system of Xenopus laevis oocytes, a mouse distal convoluted cell line, mDCT15 cells, endogenously expressing NCC, and an ex-vivo kidney perfusion technique, we assessed the effect of insulin on the activity and phosphorylation of NCC. The signaling pathway involved was analyzed. RESULTS: In Xenopus oocytes insulin increases the activity of NCC together with its phosphorylation at threonine residue 58. Activation of NCC by insulin was also observed in mDCT15 cells. Additionally, insulin increased the NCC phosphorylation in kidney under the ex-vivo perfusion technique. In oocytes and mDCT15 cells, insulin effect on NCC was prevented with inhibitors of phosphatidylinositol 3-kinase (PI3K), mTORC2, and AKT1 kinases, but not by inhibitors of MAP or mTORC1 kinases, suggesting that PI3K-mTORC2-AKT1 is the intracellular pathway required. Additionally, activation of NCC by insulin was not affected by wild-type or mutant versions of with no lysine kinase 1, with no lysine kinase 4, or serum glucocorticoid kinase 1, but it was no longer observed in the presence of wild-type or the dominant negative, catalytically inactive with no lysine kinase 3, implicating this kinase in the process. CONCLUSION: Insulin induces activation and phosphorylation of NCC. This effect could play an important role in arterial hypertension associated with hyperinsulinemic states, such as obesity, metabolic syndrome, or type 2 diabetes mellitus.


Assuntos
Insulina/farmacologia , Rim/efeitos dos fármacos , Simportadores de Cloreto de Sódio/metabolismo , Animais , Western Blotting , Células Cultivadas , Rim/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Complexos Multiproteicos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Xenopus laevis
2.
FEMS Microbiol Lett ; 284(1): 109-19, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18462392

RESUMO

The ArcB/A two-component signal transduction system of Escherichia coli modulates the expression of numerous operons in response to redox conditions of growth. We demonstrate that the putative arcA and arcB genes of Mannheimia succiniciproducens MBEL55E, a capnophilic (CO2-loving) rumen bacterium, encode functional proteins that specify a two-component system. The Arc proteins of the two bacterial species sufficiently resemble each other that they can participate in heterologous transphosphorylation in vitro, and the arcA and arcB genes of M. succiniciproducens confer toluidine blue resistance to E. coli arcA and arcB mutants. However, neither the quinone analogs (ubiquinone 0 and menadione) nor the cytosolic effectors (d-lactate, acetate, and pyruvate) affect the net phosphorylation of M. succiniciproducens ArcB. Our results indicate that different types of signaling molecules and distinct modes of kinase regulation are used by the ArcB proteins of E. coli and M. succiniciproducens.


Assuntos
Mannheimia/fisiologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Transdução de Sinais , Transativadores/genética , Transativadores/metabolismo , Sequência de Aminoácidos , Antibacterianos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/fisiologia , Teste de Complementação Genética , Mannheimia/genética , Dados de Sequência Molecular , Fosforilação , Homologia de Sequência de Aminoácidos , Cloreto de Tolônio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA