Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Exp Dermatol ; 31(4): 535-547, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34748247

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs that have emerged as central regulators of gene expression and powerful biomarkers of disease. Much is yet unknown about their role in psoriasis pathology. To globally characterize the miRNAome of psoriatic skin, skin biopsies were collected from psoriatic cases (n = 75) and non-psoriatic controls (n = 46) and RNA sequenced. Count data were meta-analysed with a previously published dataset (cases, n = 24, controls, n = 20), increasing the number of psoriatic cases fourfold from previously published studies. Differential gene expression analyses were performed comparing lesional psoriatic (PP), non-lesional psoriatic (PN) and control (NN) skin. Further, functional enrichment and cell-specific analyses were performed. Across all contrasts, we identified 439 significantly differentially expressed miRNAs (DEMs), of which 85 were novel for psoriasis and 11 were related to disease severity. Meta-analyses identified 20 DEMs between PN and NN, suggesting an inherent change in the constitution of all skin in psoriasis. By integrating the miRNA transcriptome with mRNA target interactions, we identified several functionally enriched terms, including "thyroid hormone signalling," "insulin resistance" and various infectious diseases. Cell-specific expression analyses revealed that the upregulated DEMs were enriched in epithelial and immune cells. This study provides the most comprehensive overview of the miRNAome in psoriatic skin to date and identifies a miRNA signature related to psoriasis severity. Our results may represent molecular links between psoriasis and related comorbidities and have outlined potential directions for future functional studies to identify biomarkers and treatment targets.


Assuntos
MicroRNAs , Psoríase , Biomarcadores/metabolismo , Perfilação da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Psoríase/metabolismo , Índice de Gravidade de Doença , Pele/metabolismo
2.
Sci Rep ; 11(1): 18952, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556693

RESUMO

Proper regulation of the cell cycle is necessary for normal growth and development of all organisms. Conversely, altered cell cycle regulation often underlies proliferative diseases such as cancer. Long non-coding RNAs (lncRNAs) are recognized as important regulators of gene expression and are often found dysregulated in diseases, including cancers. However, identifying lncRNAs with cell cycle functions is challenging due to their often low and cell-type specific expression. We present a highly effective method that analyses changes in promoter activity, transcription, and RNA levels for identifying genes enriched for cell cycle functions. Specifically, by combining RNA sequencing with ChIP sequencing through the cell cycle of synchronized human keratinocytes, we identified 1009 genes with cell cycle-dependent expression and correlated changes in RNA polymerase II occupancy or promoter activity as measured by histone 3 lysine 4 trimethylation (H3K4me3). These genes were highly enriched for genes with known cell cycle functions and included 57 lncRNAs. We selected four of these lncRNAs-SNHG26, EMSLR, ZFAS1, and EPB41L4A-AS1-for further experimental validation and found that knockdown of each of the four lncRNAs affected cell cycle phase distributions and reduced proliferation in multiple cell lines. These results show that many genes with cell cycle functions have concomitant cell-cycle dependent changes in promoter activity, transcription, and RNA levels and support that our multi-omics method is well suited for identifying lncRNAs involved in the cell cycle.


Assuntos
Ciclo Celular/genética , Proliferação de Células/genética , RNA Polimerase II/metabolismo , RNA Longo não Codificante/metabolismo , Sequenciamento de Cromatina por Imunoprecipitação , Técnicas de Silenciamento de Genes , Células HaCaT , Humanos , Regiões Promotoras Genéticas , RNA Longo não Codificante/genética , RNA-Seq
3.
BMC Cancer ; 19(1): 1007, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31660891

RESUMO

BACKGROUND: The expression of microRNAs (miRNAs) is a promising prognostic and diagnostic tool in hepatocellular carcinoma (HCC). Here we performed small RNA sequencing (sRNA-seq) of tissue, serum and serum exosomes to investigate changes in miRNA expression between the different sample types and correlated the expression with clinical parameters. We also performed gene expression arrays on tumor and normal tissue. RESULTS: Paired tissue, serum and serum exosomes sequencing revealed consistent positive correlation of miR-21 between serum exosomes and tumor tissue, indicating that miR-21 could be exported from tissue to circulation via exosomes. We found that let-7 miRNAs are generally upregulated in serum exosomes compared to whole serum, indicating that these miRNAs could be preferentially loaded into exosomes. Comparing serum from HCC patients with serum from healthy individuals revealed a global increase of miRNAs in serum from HCC patients, including an almost 4-fold increase of several miRNAs, including the liver-specific miR-122. When correlating miRNA expression with clinical parameters we detected significant association between hepatitis B virus (HBV) infection and miR-122 in serum as well as several serum and tissue-miRNAs that correlated with surgery type. We found that miR-141 and miR-146 correlated with cirrhosis in tumor tissue and normal tissue, respectively. Finally, high expression of miR-21 in tumors were associated with poor survival. Focusing on gene expression we found several significant messenger RNAs (mRNAs) between tumor and normal tissue and a Gene Ontology (GO) analysis revealed that these changes were mainly related to cell cycle and metabolism. Further, we detected mRNAs that correlated with cirrhosis and HBV infection in tissue. Finally, GO analysis of predicted targets for miRNAs down-regulated in tumor found that these were enriched for functions related to collagen synthesis. CONCLUSIONS: Our combined data point to altered miRNA and mRNA expression contributing to both generally impaired lipid metabolism and increased cell proliferation and a miRNA-driven increase in collagen synthesis in HCC. Our results further indicate a correlation in miRNA expression between exosomes, serum, and tissue samples suggesting export from tumors via exosomes. This correlation could provide a basis for a more tumor-specific miRNA profile in serum.


Assuntos
Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/patologia , Exossomos/genética , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/patologia , MicroRNAs/genética , RNA Mensageiro/genética , Transcriptoma/genética , Biomarcadores Tumorais/genética , Estudos de Coortes , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Hepatite B/genética , Hepatite B/virologia , Vírus da Hepatite B , Humanos , Cirrose Hepática/genética , Prognóstico , RNA-Seq/métodos
4.
FEBS Open Bio ; 8(12): 1992-2001, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30524949

RESUMO

Nephronectin (NPNT) is an extracellular matrix (ECM) protein involved in kidney development. We recently reported intracellular NPNT as a potential prognostic marker in breast cancer and that NPNT promotes metastasis in an integrin-dependent manner. Here, we used reverse-phase protein array (RPPA) to analyze NPNT-triggered intracellular signaling in the 66cl4 mouse breast cancer cell line. The results showed that the integrin-binding enhancer motif is important for the cellular effects upon NPNT interaction with its receptors, including phosphorylation of p38 mitogen-activated protein kinase (MAPK). Furthermore, analysis using prediction tools suggests involvement of NPNT in promoting cell viability. In conclusion, our results indicate that NPNT, via its integrin-binding motifs, promotes cell viability through phosphorylation of p38 MAPK.

5.
BMC Syst Biol ; 9: 40, 2015 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-26205660

RESUMO

BACKGROUND: The gastrointestinal peptide hormones cholecystokinin and gastrin exert their biological functions via cholecystokinin receptors CCK1R and CCK2R respectively. Gastrin, a central regulator of gastric acid secretion, is involved in growth and differentiation of gastric and colonic mucosa, and there is evidence that it is pro-carcinogenic. Cholecystokinin is implicated in digestion, appetite control and body weight regulation, and may play a role in several digestive disorders. RESULTS: We performed a detailed analysis of the literature reporting experimental evidence on signaling pathways triggered by CCK1R and CCK2R, in order to create a comprehensive map of gastrin and cholecystokinin-mediated intracellular signaling cascades. The resulting signaling map captures 413 reactions involving 530 molecular species, and incorporates the currently available knowledge into one integrated signaling network. The decomposition of the signaling map into sub-networks revealed 18 modules that represent higher-level structures of the signaling map. These modules allow a more compact mapping of intracellular signaling reactions to known cell behavioral outcomes such as proliferation, migration and apoptosis. The integration of large-scale protein-protein interaction data to this literature-based signaling map in combination with topological analyses allowed us to identify 70 proteins able to increase the compactness of the map. These proteins represent experimentally testable hypotheses for gaining new knowledge on gastrin- and cholecystokinin receptor signaling. The CCKR map is freely available both in a downloadable, machine-readable SBML-compatible format and as a web resource through PAYAO ( http://sblab.celldesigner.org:18080/Payao11/bin/). CONCLUSION: We have demonstrated how a literature-based CCKR signaling map together with its protein interaction extensions can be analyzed to generate new hypotheses on molecular mechanisms involved in gastrin- and cholecystokinin-mediated regulation of cellular processes.


Assuntos
Biologia Computacional , Gastrinas/metabolismo , Receptor de Colecistocinina B/metabolismo , Transdução de Sinais , Animais , Apoptose , Linhagem Celular Tumoral , Espaço Intracelular/metabolismo , Mapeamento de Interação de Proteínas , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA