Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hippocampus ; 29(5): 422-439, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-28888073

RESUMO

Hippocampal CA1 pyramidal neurons, a major component of the medial temporal lobe memory circuit, are selectively vulnerable during the progression of Alzheimer's disease (AD). The cellular mechanism(s) underlying degeneration of these neurons and the relationship to cognitive performance remains largely undefined. Here, we profiled neurotrophin and neurotrophin receptor gene expression within microdissected CA1 neurons along with regional hippocampal dissections from subjects who died with a clinical diagnosis of no cognitive impairment (NCI), mild cognitive impairment (MCI), or AD using laser capture microdissection (LCM), custom-designed microarray analysis, and qPCR of CA1 subregional dissections. Gene expression levels were correlated with cognitive test scores and AD neuropathology criteria. We found a significant downregulation of several neurotrophin genes (e.g., Gdnf, Ngfb, and Ntf4) in CA1 pyramidal neurons in MCI compared to NCI and AD subjects. In addition, the neurotrophin receptor transcripts TrkB and TrkC were decreased in MCI and AD compared to NCI. Regional hippocampal dissections also revealed select neurotrophic gene dysfunction providing evidence for vulnerability within the hippocampus proper during the progression of dementia. Downregulation of several neurotrophins of the NGF family and cognate neurotrophin receptor (TrkA, TrkB, and TrkC) genes correlated with antemortem cognitive measures including the Mini-Mental State Exam (MMSE), a composite global cognitive score (GCS), and Episodic, Semantic, and Working Memory, Perceptual Speed, and Visuospatial domains. Significant correlations were found between select neurotrophic expression downregulation and neuritic plaques (NPs) and neurofibrillary tangles (NFTs), but not diffuse plaques (DPs). These data suggest that dysfunction of neurotrophin signaling complexes have profound negative sequelae within vulnerable hippocampal cell types, which play a role in mnemonic and executive dysfunction during the progression of AD.


Assuntos
Doença de Alzheimer/patologia , Disfunção Cognitiva/patologia , Hipocampo/patologia , Fatores de Crescimento Neural/metabolismo , Células Piramidais/patologia , Receptores de Fator de Crescimento Neural/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/patologia , Disfunção Cognitiva/metabolismo , Progressão da Doença , Feminino , Hipocampo/metabolismo , Humanos , Masculino , Células Piramidais/metabolismo
2.
J Neurosci ; 36(15): 4248-58, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27076423

RESUMO

Epidemiological findings suggest that diabetic individuals are at a greater risk for developing Alzheimer's disease (AD). To examine the mechanisms by which diabetes mellitus (DM) may contribute to AD pathology in humans, we examined brain tissue from streptozotocin-treated type 1 diabetic adult male vervet monkeys receiving twice-daily exogenous insulin injections for 8-20 weeks. We found greater inhibitory phosphorylation of insulin receptor substrate 1 in each brain region examined of the diabetic monkeys when compared with controls, consistent with a pattern of brain insulin resistance that is similar to that reported in the human AD brain. Additionally, a widespread increase in phosphorylated tau was seen, including brain areas vulnerable in AD, as well as relatively spared structures, such as the cerebellum. An increase in active ERK1/2 was also detected, consistent with DM leading to changes in tau-kinase activity broadly within the brain. In contrast to these widespread changes, we found an increase in soluble amyloid-ß (Aß) levels that was restricted to the temporal lobe, with the greatest increase seen in the hippocampus. Consistent with this localized Aß increase, a hippocampus-restricted decrease in the protein and mRNA for the Aß-degrading enzyme neprilysin (NEP) was found, whereas various Aß-clearing and -degrading proteins were unchanged. Thus, we document multiple biochemical changes in the insulin-controlled DM monkey brain that can link DM with the risk of developing AD, including dysregulation of the insulin-signaling pathway, changes in tau phosphorylation, and a decrease in NEP expression in the hippocampus that is coupled with a localized increase in Aß. SIGNIFICANCE STATEMENT: Given that diabetes mellitus (DM) appears to increase the risk of developing Alzheimer's disease (AD), understanding the mechanisms by which DM promotes AD is important. We report that DM in a nonhuman primate brain leads to changes in the levels or posttranslational processing of proteins central to AD pathobiology, including tau, amyloid-ß (Aß), and the Aß-degrading protease neprilysin. Additional evidence from this model suggests that alterations in brain insulin signaling occurred that are reminiscent of insulin signaling pathway changes seen in human AD. Thus, in an in vivo model highly relevant to humans, we show multiple alterations in the brain resulting from DM that are mechanistically linked to AD risk.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Química Encefálica , Diabetes Mellitus Tipo 1/metabolismo , Hipocampo/metabolismo , Resistência à Insulina , Neprilisina/metabolismo , Proteínas tau/metabolismo , Animais , Chlorocebus aethiops , Diabetes Mellitus Experimental/metabolismo , Fígado/metabolismo , Masculino , Fosforilação , Transdução de Sinais
3.
Neuropharmacology ; 79: 172-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24445080

RESUMO

Clinical neuropathologic studies suggest that the selective vulnerability of hippocampal CA1 pyramidal projection neurons plays a key role in the onset of cognitive impairment during the early phases of Alzheimer's disease (AD). Disruption of this neuronal population likely affects hippocampal pre- and postsynaptic efficacy underlying episodic memory circuits. Therefore, identifying perturbations in the expression of synaptic gene products within CA1 neurons prior to frank AD is crucial for the development of disease modifying therapies. Here we used custom-designed microarrays to examine progressive alterations in synaptic gene expression within CA1 neurons in cases harvested from the Rush Religious Orders Study who died with a clinical diagnosis of no cognitive impairment (NCI), mild cognitive impairment (MCI, a putative prodromal AD stage), or mild/moderate AD. Quantitative analysis revealed that 21 out of 28 different transcripts encoding regulators of synaptic function were significantly downregulated (1.4-1.8 fold) in CA1 neurons in MCI and AD compared to NCI, whereas synaptic transcript levels were not significantly different between MCI and AD. The downregulated transcripts encoded regulators of presynaptic vesicle trafficking, including synaptophysin and synaptogyrin, regulators of vesicle docking and fusion/release, such as synaptotagmin and syntaxin 1, and regulators of glutamatergic postsynaptic function, including PSD-95 and synaptopodin. Clinical pathologic correlation analysis revealed that downregulation of these synaptic markers was strongly associated with poorer antemortem cognitive status and postmortem AD pathological criteria such as Braak stage, NIA-Reagan, and CERAD diagnosis. In contrast to the widespread loss of synaptic gene expression observed in CA1 neurons in MCI, transcripts encoding ß-amyloid precursor protein (APP), APP family members, and regulators of APP metabolism were not differentially regulated in CA1 neurons across the clinical diagnostic groups. Taken together, these data suggest that CA1 synaptic gene dysregulation occurs early in the cascade of pathogenic molecular events prior to the onset of AD, which may form the basis for novel pharmacological treatment approaches for this dementing disorder. This article is part of a Special Issue entitled 'Neurodegenerative Disorders'.


Assuntos
Doença de Alzheimer/metabolismo , Região CA1 Hipocampal/metabolismo , Disfunção Cognitiva/metabolismo , Células Piramidais/metabolismo , Idoso de 80 Anos ou mais , Feminino , Expressão Gênica , Humanos , Masculino , Reação em Cadeia da Polimerase , Índice de Gravidade de Doença , Análise Serial de Tecidos
4.
J Chem Neuroanat ; 42(2): 102-10, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21669283

RESUMO

Endocytic system dysfunction is one of the earliest disturbances that occur in Alzheimer's disease (AD), and may underlie the selective vulnerability of cholinergic basal forebrain (CBF) neurons during the progression of dementia. Herein we report that genes regulating early and late endosomes are selectively upregulated within CBF neurons in mild cognitive impairment (MCI) and AD. Specifically, upregulation of rab4, rab5, rab7, and rab27 was observed in CBF neurons microdissected from postmortem brains of individuals with MCI and AD compared to age-matched control subjects with no cognitive impairment (NCI). Upregulated expression of rab4, rab5, rab7, and rab27 correlated with antemortem measures of cognitive decline in individuals with MCI and AD. qPCR validated upregulation of these select rab GTPases within microdissected samples of the basal forebrain. Moreover, quantitative immunoblot analysis demonstrated upregulation of rab5 protein expression in the basal forebrain of subjects with MCI and AD. The elevation of rab4, rab5, and rab7 expression is consistent with our recent observations in CA1 pyramidal neurons in MCI and AD. These findings provide further support that endosomal pathology accelerates endocytosis and endosome recycling, which may promote aberrant endosomal signaling and neurodegeneration throughout the progression of AD.


Assuntos
Doença de Alzheimer/enzimologia , Núcleo Basal de Meynert/enzimologia , Neurônios Colinérgicos/enzimologia , Disfunção Cognitiva/enzimologia , Regulação para Cima/fisiologia , Proteínas rab de Ligação ao GTP/biossíntese , Proteínas rab4 de Ligação ao GTP/biossíntese , Proteínas rab5 de Ligação ao GTP/biossíntese , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/fisiopatologia , Núcleo Basal de Meynert/fisiopatologia , Disfunção Cognitiva/fisiopatologia , Feminino , Humanos , Masculino , Proteínas rab de Ligação ao GTP/genética , Proteínas rab27 de Ligação ao GTP , Proteínas rab4 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/genética , proteínas de unión al GTP Rab7
5.
J Chem Neuroanat ; 42(2): 111-7, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21397006

RESUMO

The higher incidence rate of Alzheimer's disease (AD) in elderly women indicates that gender plays a role in AD pathogenesis. Evidence from clinical and pharmacologic studies, neuropathological examinations, and models of hormone replacement therapy suggest that cholinergic basal forebrain (CBF) cortical projection neurons within the nucleus basalis (NB), which mediate memory and attention and degenerate in AD, may be preferentially vulnerable in elderly women compared to men. CBF neurons depend on nerve growth factor (NGF) and their cognate receptors (trkA and p75(NTR)) for their survival and maintenance. We recently demonstrated a shift in the balance of NGF and its receptors toward cell death mechanisms during the progression of AD. To address whether gender affects NGF signaling system expression within the CBF, we used single cell RNA amplification and custom microarray technologies to compare gene expression profiles of single cholinergic NB neurons in tissue specimens from male and female members of the Religious Orders Study who died with a clinical diagnosis of no cognitive impairment (NCI), mild cognitive impairment (MCI), or mild/moderate AD. p75(NTR) expression within male cholinergic NB neurons was unchanged across clinical diagnosis, whereas p75(NTR) mRNA levels in female NB neurons exhibited a ∼40% reduction in AD compared to NCI. Male AD subjects displayed a ∼45% reduction in trkA mRNA levels within NB neurons compared to NCI and MCI. In contrast, NB neuronal trkA expression in females was reduced ∼50% in both MCI and AD compared to NCI. Reduced trkA mRNA levels were associated with poorer global cognitive performance and higher Braak scores in the female subjects. In addition, we found a female-selective reduction in GluR2 AMPA glutamate receptor subunit expression in NB neurons in AD. These data suggest that cholinergic NB neurons in females may be at greater risk for degeneration during the progression of AD and support the concept of gender-specific therapeutic interventions during the preclinical stages of the disease.


Assuntos
Doença de Alzheimer/fisiopatologia , Núcleo Basal de Meynert/metabolismo , Neurônios Colinérgicos/metabolismo , Fator de Crescimento Neural/genética , Receptores de Glutamato/genética , Caracteres Sexuais , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Núcleo Basal de Meynert/patologia , Núcleo Basal de Meynert/fisiopatologia , Morte Celular/genética , Neurônios Colinérgicos/patologia , Neurônios Colinérgicos/fisiologia , Progressão da Doença , Regulação para Baixo/genética , Feminino , Humanos , Masculino , Fator de Crescimento Neural/biossíntese , Fator de Crescimento Neural/fisiologia , Receptor de Fator de Crescimento Neural/genética , Receptor trkA/genética , Receptores de AMPA/genética , Receptores de Glutamato/biossíntese , Receptores de Glutamato/fisiologia , Fatores de Risco , Distribuição por Sexo
6.
Am J Pathol ; 177(5): 2256-67, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20889561

RESUMO

In vitro studies have shown that cystatin C (CysC) is neuroprotective. Here we demonstrate that CysC is neuroprotective in vivo, in a mouse model of the inherited neurodegenerative disorder, progressive myoclonic epilepsy type 1 (EPM1). Loss-of-function mutations in the cystatin B (CysB) gene, an intracellular cysteine protease inhibitor, lead to this human disease. A CysB-knockout (CysBKO) mouse model develops symptoms that mimic EPM1. CysB deficiency in these mice results in enhanced cathepsin B and D activities, indicating lysosomal dysfunction. We show that expression of CysC is enhanced in the brains of CysBKO mice. Crossbreeding of CysBKO mice with either CysC-overexpressing transgenic mice or CysC-knockout mice demonstrates that clinical symptoms and neuropathologies, including motor coordination disorder, cerebellar atrophy, neuronal loss in the cerebellum and cerebral cortex, and gliosis caused by CysB deficiency, are rescued by CysC overexpression and exacerbated by CysC deficiency. Thus, CysC effectively rescues the CysB loss-of-function mutations, facilitating the reversal of pathophysiological changes and suggesting a novel therapeutic intervention for patients with EPM1 and other neurodegenerative disorders.


Assuntos
Cistatina B/metabolismo , Cistatina C/metabolismo , Epilepsias Mioclônicas Progressivas/metabolismo , Epilepsias Mioclônicas Progressivas/patologia , Neurônios/metabolismo , Neurônios/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Catepsina B/genética , Catepsina B/metabolismo , Catepsina D/genética , Catepsina D/metabolismo , Cistatina B/genética , Cistatina C/genética , Modelos Animais de Doenças , Feminino , Gliose/patologia , Humanos , Lisossomos/enzimologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Teste de Desempenho do Rota-Rod
7.
J Alzheimers Dis ; 22(2): 631-9, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20847427

RESUMO

Endocytic alterations are one of the earliest changes to occur in Alzheimer's disease (AD), and are hypothesized to be involved in the selective vulnerability of specific neuronal populations during the progression of AD. Previous microarray and real-time quantitative PCR experiments revealed an upregulation of the early endosomal effector rab5 and the late endosome constituent rab7 in the hippocampus of people with mild cognitive impairment (MCI) and AD. To assess whether these select rab GTPase gene expression changes are reflected in protein levels within selectively vulnerable brain regions (basal forebrain, frontal cortex, and hippocampus) and relatively spared areas (cerebellum and striatum), we performed immunoblot analysis using antibodies directed against rab5 and rab7 on postmortem human brain tissue harvested from cases with a premortem clinical diagnosis of no cognitive impairment (NCI), MCI, and AD. Results indicate selective upregulation of both rab5 and rab7 levels within basal forebrain, frontal cortex, and hippocampus in MCI and AD, which also correlated with Braak staging. In contrast, no differences in protein levels were found in the less vulnerable cerebellum and striatum. These regional immunoblot assays are consistent with single cell gene expression data, and provide protein-based evidence for endosomal markers contributing to the vulnerability of cell types within selective brain regions during the progression of AD.


Assuntos
Doença de Alzheimer , Encéfalo/metabolismo , Transtornos Cognitivos , Regulação para Cima/fisiologia , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Encéfalo/patologia , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/patologia , Transtornos Cognitivos/fisiopatologia , Feminino , Humanos , Masculino , proteínas de unión al GTP Rab7
8.
J Alzheimers Dis ; 18(4): 885-96, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19749437

RESUMO

Fibers containing galanin (GAL) hyperinnervate cholinergic basal forebrain (CBF) nucleus basalis neurons in late stage Alzheimer's disease (AD), yet the molecular consequences of this phenomenon are unknown. To determine whether GAL alters the expression of genes critical to CBF cell survival in AD, single cell microarray analysis was used to determine mRNA levels within nucleus basalis neurons lacking GAL innervation from subjects who died with a clinical diagnosis of no cognitive impairment (NCI) compared to nucleus basalis neurons from AD cases either lacking GAL hyperinnervation (AD/GAL-) or those displaying prominent GAL hyperinnervation (AD/GAL+). Levels of mRNAs encoding putatively neuroprotective proteins such as the GluR2 Ca(2)-impermeable glutamate receptor subunit, superoxide dismutase 2, and the GLUT2 glucose transporter were significantly decreased in AD/GAL- nucleus basalis neurons compared to NCI and AD/GAL+ neurons. By contrast, mRNAs encoding calpain catalytic and regulatory subunits, which may contribute to cell death in AD, were increased in AD/GAL- compared to NCI and AD/GAL+ neurons. Hence, GAL fiber hyperinnervation appears to preserve the expression of genes subserving multiple neuroprotective pathways suggesting that GAL overexpression regulates CBF neuron survival in AD.


Assuntos
Doença de Alzheimer/metabolismo , Galanina/fisiologia , Prosencéfalo/metabolismo , Idoso , Idoso de 80 Anos ou mais , Fibras Colinérgicas/fisiologia , Transtornos Cognitivos/metabolismo , Regulação da Expressão Gênica , Humanos , Análise em Microsséries , RNA Mensageiro/metabolismo
9.
Neurodegener Dis ; 5(3-4): 228-31, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18322398

RESUMO

BACKGROUND: Fibers containing galanin (GAL) enlarge and hyperinnervate cholinergic basal forebrain (CBF) nucleus basalis (NB) neurons in late-stage Alzheimer's disease (AD), yet the physiological consequences of this phenomenon are unclear. OBJECTIVE: To determine whether GAL hyperinnervation of cholinergic NB neurons modulates the expression of genes critical to cholinergic transmission [e.g. acetylcholine (ACh) metabolism and ACh receptors] in AD. METHODS: Single-cell gene expression profiling was used to compare cholinergic mRNA levels in non-GAL-hyperinnervated NB neurons in tissue autopsied from cases classified as having no cognitive impairment (NCI) or late-stage AD (AD/GAL-) and in GAL-hyperinnervated (AD/GAL+) NB neurons from the same AD subjects. RESULTS: AD/GAL+ cells displayed a significant upregulation in choline acetyltransferase (ChAT) mRNA expression compared to NCI and AD/GAL- cells. CONCLUSION: GAL fiber hyperinnervation of cholinergic NB neurons upregulates the expression of ChAT, the synthetic enzyme for ACh, suggesting that GAL regulates the cholinergic tone of CBF neurons in AD.


Assuntos
Doença de Alzheimer/enzimologia , Colina O-Acetiltransferase/biossíntese , Fibras Colinérgicas/enzimologia , Galanina/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Neurônios/enzimologia , Prosencéfalo/enzimologia , Regulação para Cima/fisiologia , Doença de Alzheimer/genética , Colina O-Acetiltransferase/genética , Humanos
10.
Arch Neurol ; 64(12): 1771-6, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18071042

RESUMO

BACKGROUND: Dysfunction of basocortical cholinergic projection neurons of the nucleus basalis (NB) correlates with cognitive deficits in Alzheimer disease (AD). Nucleus basalis neurons receive cholinergic inputs and express nicotinic acetylcholine receptors (nAChRs) and muscarinic AChRs (mAChRs), which may regulate NB neuron activity in AD. Although alterations in these AChRs occur in the AD cortex, there is little information detailing whether defects in nAChR and mAChR gene expression occur in cholinergic NB neurons during disease progression. OBJECTIVE: To determine whether nAChR and mAChR gene expression is altered in cholinergic NB neurons during the progression of AD. DESIGN: Individual NB neurons from subjects diagnosed ante mortem as having no cognitive impairment (NCI), mild cognitive impairment (MCI), or mild to moderate AD were analyzed by single-cell AChR expression profiling via custom-designed microarrays. SETTING: Academic research. PARTICIPANTS: Participants were members of the Rush Religious Orders Study cohort. MAIN OUTCOME MEASURES: Real-time quantitative polymerase chain reaction was performed to validate microarray findings. RESULTS: Cholinergic NB neurons displayed a statistically significant up-regulation of alpha7 nAChR messenger RNA expression in subjects with mild to moderate AD compared with those with NCI and MCI (P<.001). No differences were found for other nAChR and mAChR subtypes across the cohort. Expression levels of alpha7 nAChRs were inversely associated with Global Cognitive Score and with Mini-Mental State Examination performance. CONCLUSIONS: Up-regulation of alpha7 nAChRs may signal a compensatory response to maintain basocortical cholinergic activity during AD progression. Alternatively, putative competitive interactions of this receptor with beta-amyloid may provide a pathogenic mechanism for NB dysfunction. Increasing NB alpha7 nAChR expression may serve as a marker for the progression of AD.


Assuntos
Doença de Alzheimer/metabolismo , Neurônios/metabolismo , Sistema Nervoso Parassimpático/metabolismo , Receptores Nicotínicos/biossíntese , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Gânglios da Base/metabolismo , Gânglios da Base/patologia , Encéfalo/patologia , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/patologia , Estudos de Coortes , DNA Complementar/biossíntese , DNA Complementar/genética , Feminino , Regulação da Expressão Gênica/fisiologia , Marcadores Genéticos , Humanos , Imuno-Histoquímica , Masculino , Neurônios/patologia , Testes Neuropsicológicos , Análise de Sequência com Séries de Oligonucleotídeos , Sistema Nervoso Parassimpático/patologia , Escalas de Graduação Psiquiátrica , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores Nicotínicos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Regulação para Cima , Receptor Nicotínico de Acetilcolina alfa7
11.
J Neurochem ; 97(2): 475-87, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16539663

RESUMO

Dysfunction of cholinergic basal forebrain (CBF) neurons of the nucleus basalis (NB) is a cardinal feature of Alzheimer's disease (AD) and correlates with cognitive decline. Survival of CBF neurons depends upon binding of nerve growth factor (NGF) with high-affinity (trkA) and low-affinity (p75(NTR)) neurotrophin receptors produced within CBF neurons. Since trkA and p75(NTR) protein levels are reduced within CBF neurons of people with mild cognitive impairment (MCI) and mild AD, trkA and/or p75(NTR) gene expression deficits may drive NB degeneration. Using single cell expression profiling methods coupled with custom-designed cDNA arrays and validation with real-time quantitative PCR (qPCR) and in situ hybridization, individual cholinergic NB neurons displayed a significant down regulation of trkA, trkB, and trkC expression during the progression of AD. An intermediate reduction was observed in MCI, with the greatest decrement in mild to moderate AD as compared to controls. Importantly, trk down regulation is associated with cognitive decline measured by the Global Cognitive Score (GCS) and the Mini-Mental State Examination (MMSE). In contrast, there is a lack of regulation of p75(NTR) expression. Thus, trk defects may be a molecular marker for the transition from no cognitive impairment (NCI) to MCI, and from MCI to frank AD.


Assuntos
Doença de Alzheimer/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Prosencéfalo/patologia , Receptor trkA/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Colina O-Acetiltransferase/metabolismo , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/patologia , Estudos de Coortes , Progressão da Doença , Feminino , Humanos , Imuno-Histoquímica/métodos , Hibridização In Situ/métodos , Masculino , Entrevista Psiquiátrica Padronizada/estatística & dados numéricos , Proteínas do Tecido Nervoso/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Mudanças Depois da Morte , RNA Mensageiro/metabolismo , Receptor trkA/genética , Receptores de Fator de Crescimento Neural/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Índice de Gravidade de Doença
12.
J Neurochem ; 96(5): 1401-8, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16478530

RESUMO

Molecular mechanisms underlying tauopathy remain undetermined. In the current study, single cell gene expression profiling was coupled with custom-designed cDNA array analysis to evaluate tau expression and other cytoskeletal elements within individual neuronal populations in patients with no cognitive impairment (NCI), mild cognitive impairment (MCI), and Alzheimer's disease (AD). Results revealed a shift in the ratio of three-repeat tau (3Rtau) to four-repeat tau (4Rtau) mRNAs within individual human cholinergic basal forebrain (CBF) neurons within nucleus basalis (NB) and CA1 hippocampal neurons during the progression of AD, but not during normal aging. A shift in 3Rtau to 4Rtau may precipitate a cascade of events in the selective vulnerability of neurons, ultimately leading to frank neurofibrillary tangle (NFT) formation in tauopathies including AD.


Assuntos
Acetilcolina/metabolismo , Doença de Alzheimer , Transtornos Cognitivos , Neurônios/metabolismo , Prosencéfalo/patologia , Proteínas tau/genética , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Estudos de Casos e Controles , Transtornos Cognitivos/genética , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/patologia , Estudos de Coortes , Feminino , Expressão Gênica/fisiologia , Humanos , Masculino , Neurônios/patologia , Hibridização de Ácido Nucleico/métodos , Prosencéfalo/metabolismo , RNA Mensageiro/metabolismo , Sequências Repetitivas de Ácido Nucleico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA