Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Med ; 28(2): 303-314, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35177860

RESUMO

Previous microbiome and metabolome analyses exploring non-communicable diseases have paid scant attention to major confounders of study outcomes, such as common, pre-morbid and co-morbid conditions, or polypharmacy. Here, in the context of ischemic heart disease (IHD), we used a study design that recapitulates disease initiation, escalation and response to treatment over time, mirroring a longitudinal study that would otherwise be difficult to perform given the protracted nature of IHD pathogenesis. We recruited 1,241 middle-aged Europeans, including healthy individuals, individuals with dysmetabolic morbidities (obesity and type 2 diabetes) but lacking overt IHD diagnosis and individuals with IHD at three distinct clinical stages-acute coronary syndrome, chronic IHD and IHD with heart failure-and characterized their phenome, gut metagenome and serum and urine metabolome. We found that about 75% of microbiome and metabolome features that distinguish individuals with IHD from healthy individuals after adjustment for effects of medication and lifestyle are present in individuals exhibiting dysmetabolism, suggesting that major alterations of the gut microbiome and metabolome might begin long before clinical onset of IHD. We further categorized microbiome and metabolome signatures related to prodromal dysmetabolism, specific to IHD in general or to each of its three subtypes or related to escalation or de-escalation of IHD. Discriminant analysis based on specific IHD microbiome and metabolome features could better differentiate individuals with IHD from healthy individuals or metabolically matched individuals as compared to the conventional risk markers, pointing to a pathophysiological relevance of these features.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Microbiota , Humanos , Estudos Longitudinais , Metaboloma , Pessoa de Meia-Idade
2.
JCI Insight ; 4(8)2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30996144

RESUMO

Multiple reports of uncoupling protein 1 (UCP1) expression have established its presence in human epicardial adipose tissue (eAT). Its functional relevance to eAT, however, remains largely unknown. In a recent study, we reported that adrenergic stimulation of eAT was associated with downregulation of secreted proteins involved in oxidative stress-related and immune-related pathways. Here, we explored the UCP1-associated features of human eAT using next-generation deep sequencing. Paired biopsies of eAT, mediastinal adipose tissue (mAT), and subcutaneous adipose tissue (sAT) obtained from cardiac surgery patients, with specific criteria of high and low expression of UCP1 in eAT, were subjected to RNA sequencing. Although eAT exhibited a depot-specific upregulation in the immune-related pathways relative to mAT and sAT, high UCP1 expression in eAT was specifically associated with differential gene expression that functionally corresponded with downregulation in the production of reactive oxygen species and immune responses, including T cell homeostasis. Our data indicate that UCP1 and adaptive immunity share a reciprocal relationship at the whole-transcriptome level, thereby supporting a plausible role for UCP1 in maintaining tissue homeostasis in human eAT.


Assuntos
Tecido Adiposo/imunologia , Doenças Cardiovasculares/imunologia , Obesidade/imunologia , Pericárdio/imunologia , Proteína Desacopladora 1/metabolismo , Imunidade Adaptativa , Tecido Adiposo/patologia , Idoso , Biópsia , Doenças Cardiovasculares/patologia , Doenças Cardiovasculares/cirurgia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/imunologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Mediastino/patologia , Obesidade/complicações , Obesidade/patologia , Pericárdio/patologia , Análise de Sequência de RNA , Proteína Desacopladora 1/imunologia , Regulação para Cima
3.
Sci Rep ; 7(1): 15566, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29138472

RESUMO

Brown fat presence and metabolic activity has been associated with lower body mass index, higher insulin sensitivity and better cardiometabolic profile in humans. We, and others, have previously reported the presence of Ucp1, a marker of brown adipocytes, in human epicardial adipose tissue (eAT). Characterization of the metabolic activity and associated physiological relevance of Ucp1 within eAT, however, is still awaited. Here, we validate the presence of Ucp1 within human eAT and its 'beige' nature. Using in-vitro analytical approaches, we further characterize its thermogenic potential and demonstrate that human eAT is capable of undergoing enhanced uncoupling respiration upon stimulation. Direct biopsy gene expression analysis reveals a negative association between thermogenic markers and oxidative stress-related genes in this depot. Consistently, isoproterenol (Iso) stimulation of eAT leads to a downregulation of secreted proteins included in the GO terms 'cell redox homeostasis' and 'protein folding'. In addition, cardiac endothelial cells exhibit a downregulation in the expression of adhesion markers upon treatment with Iso-stimulated eAT derived conditioned media. Overall, these observations suggest that Ucp1- associated metabolic activity plays a significant role in local tissue homeostasis within eAT and can plausibly alter its communication with neighboring cells of the cardiovascular system.


Assuntos
Adipócitos Marrons/metabolismo , Tecido Adiposo/metabolismo , Pericárdio/metabolismo , Proteína Desacopladora 1/genética , Tecido Adiposo/fisiopatologia , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Idoso , Biópsia , Índice de Massa Corporal , Feminino , Regulação da Expressão Gênica/genética , Humanos , Resistência à Insulina/genética , Isoproterenol/farmacologia , Masculino , Pessoa de Meia-Idade , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Consumo de Oxigênio/efeitos dos fármacos , Pericárdio/fisiopatologia , Fenótipo , Cultura Primária de Células , Proteômica , Termogênese/genética , Proteína Desacopladora 1/metabolismo
4.
Br J Nutr ; 104(9): 1313-21, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20546645

RESUMO

Flax oil feeding has been proposed to have beneficial effects on the outcome of the metabolic syndrome due to the high n-3 fatty acid content of flax oil; however, the mechanisms of its action remain largely unknown. We investigated the effects of flax oil feeding on hyperlipidaemia, hyperglycaemia, hepatic steatosis and oxidative stress in the spontaneously hypertensive (SHR)/NDmcr-cp rats, a genetic model of the metabolic syndrome. Hepatic gene expression of PPAR-α, PPAR-γ and sterol-regulatory element-binding protein-1c was also assessed in order to investigate the possible underlying mechanisms. Obese and lean SHR/NDmcr-cp rats were fed high-fat diets enriched with either lard or flax oil for a period of 4 weeks. Obese rats exhibited higher body weight, liver weight and mesenteric fat-, epididymal fat- and renal fat-pad weights, and also TAG and cholesterol concentrations in serum and VLDL, LDL and HDL fractions, when compared with the lean rats (P < 0·001), irrespective of the diets. Concentrations of fasting serum insulin and urinary thiobarbituric acid reactive substances were lower in flax oil-fed obese (FO) rats compared with the lard-fed obese (LO) rats (P < 0·01). Flax oil feeding also revealed a significant reduction in hepatic TAG and cholesterol concentrations in obese rats compared with the LO rats (P < 0·05). In addition, FO rats exhibited significantly higher hepatic mRNA expression of PPAR-γ, which negatively correlated (r - 0·98, P < 0·05) with their hepatic lipid levels. These findings suggest that flax oil feeding may activate PPAR-γ-dependent pathways to alter the hepatic lipid metabolism and to increase insulin sensitivity in the obese SHR/NDmcr-cp rats.


Assuntos
Linho/química , Hipolipemiantes/farmacologia , Metabolismo dos Lipídeos , Síndrome Metabólica/tratamento farmacológico , Obesidade/tratamento farmacológico , PPAR gama/metabolismo , Óleos de Plantas/farmacologia , Animais , Gorduras na Dieta/metabolismo , Modelos Animais de Doenças , Hipolipemiantes/uso terapêutico , Insulina/sangue , Fígado/metabolismo , Síndrome Metabólica/metabolismo , Obesidade/metabolismo , PPAR gama/genética , Fitoterapia , Óleos de Plantas/uso terapêutico , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos SHR , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA