Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 617(7959): 154-161, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37100900

RESUMO

Mitotic defects activate the spindle-assembly checkpoint, which inhibits the anaphase-promoting complex co-activator CDC20 to induce a prolonged cell cycle arrest1,2. Once errors are corrected, the spindle-assembly checkpoint is silenced, allowing anaphase onset to occur. However, in the presence of persistent unresolvable errors, cells can undergo 'mitotic slippage', exiting mitosis into a tetraploid G1 state and escaping the cell death that results from a prolonged arrest. The molecular logic that enables cells to balance these duelling mitotic arrest and slippage behaviours remains unclear. Here we demonstrate that human cells modulate the duration of their mitotic arrest through the presence of conserved, alternative CDC20 translational isoforms. Downstream translation initiation results in a truncated CDC20 isoform that is resistant to spindle-assembly-checkpoint-mediated inhibition and promotes mitotic exit even in the presence of mitotic perturbations. Our study supports a model in which the relative levels of CDC20 translational isoforms control the duration of mitotic arrest. During a prolonged mitotic arrest, new protein synthesis and differential CDC20 isoform turnover create a timer, with mitotic exit occurring once the truncated Met43 isoform achieves sufficient levels. Targeted molecular changes or naturally occurring cancer mutations that alter CDC20 isoform ratios or its translational control modulate mitotic arrest duration and anti-mitotic drug sensitivity, with potential implications for the diagnosis and treatment of human cancers.


Assuntos
Proteínas Cdc20 , Pontos de Checagem da Fase M do Ciclo Celular , Biossíntese de Proteínas , Humanos , Proteínas Cdc20/química , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Fuso Acromático/metabolismo , Iniciação Traducional da Cadeia Peptídica
2.
Mol Biol Cell ; 33(12): ar110, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35921174

RESUMO

Prior work has identified signal sequences and motifs that are necessary and sufficient to target proteins to specific subcellular regions and organelles such as the plasma membrane, nucleus, endoplasmic reticulum, and mitochondria. In contrast, minimal sequence motifs that are sufficient for Golgi localization remain largely elusive. In this work, we identified a 37-amino acid alternative open reading frame (altORF) within the mRNA of the centromere protein CENP-R. This altORF peptide localizes specifically to the cytoplasmic surface of the Golgi apparatus. Through mutational analysis, we identify a minimal 10-amino acid sequence and a critical cysteine residue that are necessary and sufficient for Golgi localization. Pharmacological perturbations suggest that this peptide undergoes lipid modification to promote its localization. Together, our work defines a minimal sequence that is sufficient for Golgi targeting and provide a valuable Golgi marker for live cell imaging.


Assuntos
Cisteína , Complexo de Golgi , Cisteína/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Lipídeos , Sinais Direcionadores de Proteínas , RNA Mensageiro/metabolismo
3.
Dev Cell ; 56(15): 2192-2206.e8, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34331869

RESUMO

To generate haploid gametes, germ cells undergo two consecutive meiotic divisions requiring key changes to the cell division machinery. Here, we demonstrate that the protease separase rewires key cell division processes at the meiosis I/II transition by cleaving the meiosis-specific protein Meikin. Separase proteolysis does not inactivate Meikin but instead alters its function to create a distinct activity state. Full-length Meikin and the C-terminal Meikin separase cleavage product both localize to kinetochores, bind to Plk1 kinase, and promote Rec8 cleavage, but our results reveal distinct roles for these proteins in controlling meiosis. Mutations that prevent Meikin cleavage or that conditionally inactivate Meikin at anaphase I result in defective meiosis II chromosome alignment in mouse oocytes. Finally, as oocytes exit meiosis, C-Meikin is eliminated by APC/C-mediated degradation prior to the first mitotic division. Thus, multiple regulatory events irreversibly modulate Meikin activity during successive meiotic divisions to rewire the cell division machinery at two distinct transitions.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Meiose/fisiologia , Separase/metabolismo , Animais , Animais não Endogâmicos , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiologia , Divisão Celular/fisiologia , Divisão do Núcleo Celular , Centrômero/metabolismo , Proteínas Cromossômicas não Histona/fisiologia , Segregação de Cromossomos , Feminino , Células HeLa , Humanos , Cinetocoros/metabolismo , Camundongos , Oócitos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/fisiologia , Separase/fisiologia , Quinase 1 Polo-Like
4.
Mol Biol Cell ; 32(8): 712-721, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33596090

RESUMO

Similar to other core biological processes, the vast majority of cell division components are essential for viability across human cell lines. However, recent genome-wide screens have identified a number of proteins that exhibit cell line-specific essentiality. Defining the behaviors of these proteins is critical to our understanding of complex biological processes. Here, we harness differential essentiality to reveal the contributions of the four-subunit centromere-localized CENP-O complex, whose precise function has been difficult to define. Our results support a model in which the CENP-O complex and BUB1 act in parallel pathways to recruit a threshold level of PLK1 to mitotic kinetochores, ensuring accurate chromosome segregation. We demonstrate that targeted changes to either pathway sensitizes cells to the loss of the other component, resulting in cell-state dependent requirements. This approach also highlights the advantage of comparing phenotypes across diverse cell lines to define critical functional contributions and behaviors that could be exploited for the targeted treatment of disease.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Histonas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Centrômero/metabolismo , Centrômero/fisiologia , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/fisiologia , Segregação de Cromossomos , Histonas/genética , Histonas/fisiologia , Humanos , Cinetocoros/fisiologia , Mitose/fisiologia , Ligação Proteica , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Quinase 1 Polo-Like
5.
Dev Cell ; 55(3): 259-271, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33171109

RESUMO

Quiescence is a state of reversible proliferative arrest in which cells are not actively dividing and yet retain the capacity to reenter the cell cycle upon receiving an appropriate stimulus. Quiescent cells are remarkably diverse-they reside in different locations throughout the body, serve distinct roles, and are activated by a variety of signals. Despite this diversity, all quiescent cells must be able to persist in a nondividing state without compromising their proliferative potential, which requires changes to core cellular programs. How drastically different cell types are able to implement extensive changes to their gene-expression programs, metabolism, and cellular structures to induce a common cellular state is a fascinating question in cell and developmental biology. In this review, we explore the diversity of quiescent cells and highlight the unifying characteristics that define the quiescent state.


Assuntos
Ciclo Celular , Células/metabolismo , Animais , Ciclo Celular/genética , Proliferação de Células , Humanos , Modelos Biológicos , Transdução de Sinais , Transcrição Gênica
6.
Dev Cell ; 51(1): 35-48.e7, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31422918

RESUMO

Centromeres provide a robust model for epigenetic inheritance as they are specified by sequence-independent mechanisms involving the histone H3-variant centromere protein A (CENP-A). Prevailing models indicate that the high intrinsic stability of CENP-A nucleosomes maintains centromere identity indefinitely. Here, we demonstrate that CENP-A is not stable at centromeres but is instead gradually and continuously incorporated in quiescent cells including G0-arrested tissue culture cells and prophase I-arrested oocytes. Quiescent CENP-A incorporation involves the canonical CENP-A deposition machinery but displays distinct requirements from cell cycle-dependent deposition. We demonstrate that Plk1 is required specifically for G1 CENP-A deposition, whereas transcription promotes CENP-A incorporation in quiescent oocytes. Preventing CENP-A deposition during quiescence results in significantly reduced CENP-A levels and perturbs chromosome segregation following the resumption of cell division. In contrast to quiescent cells, terminally differentiated cells fail to maintain CENP-A levels. Our work reveals that quiescent cells actively maintain centromere identity providing an indicator of proliferative potential.


Assuntos
Proteína Centromérica A/metabolismo , Centrômero/metabolismo , Músculo Esquelético/metabolismo , Nucleossomos/metabolismo , Animais , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Divisão Celular , Linhagem Celular , Proliferação de Células , Centrômero/ultraestrutura , Epigênese Genética , Feminino , Proteínas de Fluorescência Verde/metabolismo , Humanos , Masculino , Meiose , Camundongos , Camundongos Endogâmicos C57BL , Oócitos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , RNA Interferente Pequeno/metabolismo , Estrelas-do-Mar/metabolismo , Testículo/metabolismo , Quinase 1 Polo-Like
7.
Nat Commun ; 10(1): 3262, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31332180

RESUMO

TorsinA is an ER-resident AAA + ATPase, whose deletion of glutamate E303 results in the genetic neuromuscular disease primary dystonia. TorsinA is an unusual AAA + ATPase that needs an external activator. Also, it likely does not thread a peptide substrate through a narrow central channel, in contrast to its closest structural homologs. Here, we examined the oligomerization of TorsinA to get closer to a molecular understanding of its still enigmatic function. We observe TorsinA to form helical filaments, which we analyzed by cryo-electron microscopy using helical reconstruction. The 4.4 Å structure reveals long hollow tubes with a helical periodicity of 8.5 subunits per turn, and an inner channel of ~ 4 nm diameter. We further show that the protein is able to induce tubulation of membranes in vitro, an observation that may reflect an entirely new characteristic of AAA + ATPases. We discuss the implications of these observations for TorsinA function.


Assuntos
Adenosina Trifosfatases/química , Modelos Moleculares , Chaperonas Moleculares/química , Polímeros/química , Conformação Proteica , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , Microscopia Crioeletrônica , Cristalografia por Raios X , Células HeLa , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutação , Polimerização , Polímeros/metabolismo
8.
Open Biol ; 8(9)2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30257893

RESUMO

Cytoplasmic dynein is a minus-end-directed microtubule-based motor that acts at diverse subcellular sites. During mitosis, dynein localizes simultaneously to the mitotic spindle, spindle poles, kinetochores and the cell cortex. However, it is unclear what controls the relative targeting of dynein to these locations. As dynein is heavily post-translationally modified, we sought to test a role for these modifications in regulating dynein localization. We find that dynein rapidly and strongly accumulates at mitotic spindle poles following treatment with NSC697923, a small molecule that inhibits the ubiquitin E2 enzyme, Ubc13, or treatment with PYR-41, a ubiquitin E1 inhibitor. Subsets of dynein regulators such as Lis1, ZW10 and Spindly accumulate at the spindle poles, whereas others do not, suggesting that NSC697923 differentially affects specific dynein populations. We additionally find that dynein relocalization induced by NSC697923 or PYR-41 can be suppressed by simultaneous treatment with the non-selective deubiquitinase inhibitor, PR-619. However, we did not observe altered dynein localization following treatment with the selective E1 inhibitor, TAK-243. Although it is possible that off-target effects of NSC697923 and PYR-41 are responsible for the observed changes in dynein localization, the rapid relocalization upon drug treatment highlights the highly dynamic nature of dynein regulation during mitosis.


Assuntos
Dineínas/metabolismo , Mitose , Bibliotecas de Moléculas Pequenas/farmacologia , Fuso Acromático/metabolismo , Enzimas de Conjugação de Ubiquitina/antagonistas & inibidores , Aminopiridinas/farmacologia , Benzoatos/farmacologia , Dineínas/química , Furanos/farmacologia , Células HeLa , Humanos , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Nitrofuranos/farmacologia , Transporte Proteico , Pirazóis/farmacologia , Sulfonas/farmacologia , Tiocianatos/farmacologia , Ubiquitinação
9.
Mol Biol Cell ; 29(19): 2336-2345, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30024347

RESUMO

Nde1 is a key regulator of cytoplasmic dynein, binding directly to both dynein itself and the dynein adaptor, Lis1. Nde1 and Lis1 are thought to function together to promote dynein function, yet mutations in each result in distinct neurodevelopment phenotypes. To reconcile these phenotypic differences, we sought to dissect the contribution of Nde1 to dynein regulation and explore the cellular functions of Nde1. Here we show that an Nde1-Lis1 interaction is required for spindle pole focusing and Golgi organization but is largely dispensable for centrosome placement, despite Lis1 itself being required. Thus, diverse functions of dynein rely on distinct Nde1- and Lis1-mediated regulatory mechanisms. Additionally, we discovered a robust, isoform-specific interaction between human Nde1 and the 26S proteasome and identify precise mutations in Nde1 that disrupt the proteasome interaction. Together, our work suggests that Nde1 makes unique contributions to human neurodevelopment through its regulation of both dynein and proteasome function.


Assuntos
Dineínas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Citoplasma/metabolismo , Feminino , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/química , Ligação Proteica , Isoformas de Proteínas/metabolismo
10.
Dev Cell ; 40(4): 405-420.e2, 2017 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-28216383

RESUMO

Defining the genes that are essential for cellular proliferation is critical for understanding organismal development and identifying high-value targets for disease therapies. However, the requirements for cell-cycle progression in human cells remain incompletely understood. To elucidate the consequences of acute and chronic elimination of cell-cycle proteins, we generated and characterized inducible CRISPR/Cas9 knockout human cell lines targeting 209 genes involved in diverse cell-cycle processes. We performed single-cell microscopic analyses to systematically establish the effects of the knockouts on subcellular architecture. To define variations in cell-cycle requirements between cultured cell lines, we generated knockouts across cell lines of diverse origins. We demonstrate that p53 modulates the phenotype of specific cell-cycle defects through distinct mechanisms, depending on the defect. This work provides a resource to broadly facilitate robust and long-term depletion of cell-cycle proteins and reveals insights into the requirements for cell-cycle progression.


Assuntos
Sistemas CRISPR-Cas/genética , Ciclo Celular/genética , Técnicas de Inativação de Genes , Proteína Supressora de Tumor p53/metabolismo , Polaridade Celular , Proliferação de Células , Sobrevivência Celular , Senescência Celular , Centríolos/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Células HeLa , Humanos , Fenótipo , Transdução de Sinais , Fuso Acromático/metabolismo
11.
Curr Biol ; 25(14): R601-3, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-26196485

RESUMO

Erroneous kinetochore-microtubule interactions must be detected and corrected before a cell enters anaphase to prevent chromosome mis-segregation. Two new studies describe an Aurora A-mediated error correction mechanism based on the spatial position of a chromosome within the mitotic spindle.


Assuntos
Aurora Quinase A/genética , Polaridade Celular , Posicionamento Cromossômico , Segregação de Cromossomos , Cromossomos de Insetos/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Cinetocoros/metabolismo , Meiose , Microtúbulos/metabolismo , Polos do Fuso/metabolismo , Animais , Feminino
12.
Curr Biol ; 25(5): 671-7, 2015 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-25660545

RESUMO

The kinetochore provides a vital connection between chromosomes and spindle microtubules [1, 2]. Defining the molecular architecture of the core kinetochore components is critical for understanding the mechanisms by which the kinetochore directs chromosome segregation. The KNL1/Mis12 complex/Ndc80 complex (KMN) network acts as the primary microtubule-binding interface at kinetochores [3] and provides a platform to recruit regulatory proteins [4]. Recent work found that the inner kinetochore components CENP-C and CENP-T act in parallel to recruit the KMN network to kinetochores [5-8]. However, due to the presence of these dual pathways, it has not been possible to distinguish differences in the nature of kinetochore assembly downstream of CENP-C or CENP-T. Here, we separated these pathways by targeting CENP-C and CENP-T independently to an ectopic chromosomal locus in human cells. Our work reveals that the organization of the KMN network components downstream of CENP-C and CENP-T is distinct. CENP-C recruits the Ndc80 complex through its interactions with KNL1 and the Mis12 complex. In contrast, CENP-T directly interacts with Ndc80, which in turn promotes KNL1/Mis12 complex recruitment through a separate region on CENP-T, resulting in functional relationships for KMN network localization that are inverted relative to the CENP-C pathway. We also find that distinct regulatory paradigms control the assembly of these pathways, with Aurora B kinase promoting KMN network recruitment to CENP-C and cyclin-dependent kinase (CDK) regulating KMN network recruitment to CENP-T. This work reveals unexpected complexity for the architecture and regulation of the core components of the kinetochore-microtubule interface.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos/fisiologia , Cinetocoros/fisiologia , Pontos de Checagem da Fase M do Ciclo Celular/fisiologia , Complexos Multiproteicos/metabolismo , Linhagem Celular Tumoral , Proteínas Cromossômicas não Histona/genética , Proteínas do Citoesqueleto , Imunofluorescência , Componentes do Gene , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Fosforilação
13.
Cell ; 158(2): 397-411, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-25036634

RESUMO

To ensure the stable transmission of the genome during vertebrate cell division, the mitotic spindle must attach to a single locus on each chromosome, termed the centromere. The fundamental requirement for faithful centromere inheritance is the controlled deposition of the centromere-specifying histone, CENP-A. However, the regulatory mechanisms that ensure the precise control of CENP-A deposition have proven elusive. Here, we identify polo-like kinase 1 (Plk1) as a centromere-localized regulator required to initiate CENP-A deposition in human cells. We demonstrate that faithful CENP-A deposition requires integrated signals from Plk1 and cyclin-dependent kinase (CDK), with Plk1 promoting the localization of the key CENP-A deposition factor, the Mis18 complex, and CDK inhibiting Mis18 complex assembly. By bypassing these regulated steps, we uncoupled CENP-A deposition from cell-cycle progression, resulting in mitotic defects. Thus, CENP-A deposition is controlled by a two-step regulatory paradigm comprised of Plk1 and CDK that is crucial for genomic integrity.


Assuntos
Autoantígenos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centrômero/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Ciclo Celular , Linhagem Celular , Proteína Centromérica A , Quinases Ciclina-Dependentes/metabolismo , Instabilidade Genômica , Células HeLa , Humanos , Quinase 1 Polo-Like
14.
Mol Biol Cell ; 25(13): 1983-94, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24829384

RESUMO

The key player in directing proper chromosome segregation is the macromolecular kinetochore complex, which mediates DNA-microtubule interactions. Previous studies testing individual kinetochore genes documented examples of their overexpression in tumors relative to normal tissue, leading to proposals that up-regulation of specific kinetochore genes may promote tumor progression. However, kinetochore components do not function in isolation, and previous studies did not comprehensively compare the expression behavior of kinetochore components. Here we analyze the expression behavior of the full range of human kinetochore components in diverse published expression compendia, including normal tissues and tumor samples. Our results demonstrate that kinetochore genes are rarely overexpressed individually. Instead, we find that core kinetochore genes are coordinately regulated with other cell division genes under virtually all conditions. This expression pattern is strongly correlated with the expression of the forkhead transcription factor FoxM1, which binds to the majority of cell division promoters. These observations suggest that kinetochore gene up-regulation in cancer reflects a general activation of the cell division program and that altered expression of individual kinetochore genes is unlikely to play a causal role in tumorigenesis.


Assuntos
Neoplasias da Mama/metabolismo , Carcinoma Ductal de Mama/metabolismo , Fatores de Transcrição Forkhead/fisiologia , Regulação Neoplásica da Expressão Gênica , Cinetocoros/fisiologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/patologia , Divisão Celular , Feminino , Proteína Forkhead Box M1 , Humanos , Transcriptoma , Regulação para Cima
15.
J Cell Biol ; 203(6): 883-93, 2013 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-24344181

RESUMO

Tpr is a conserved nuclear pore complex (NPC) protein implicated in the spindle assembly checkpoint (SAC) by an unknown mechanism. Here, we show that Tpr is required for normal SAC response by stabilizing Mad1 and Mad2 before mitosis. Tpr coimmunoprecipitated with Mad1 and Mad2 (hereafter designated as Tpr/Mad1/Mad2 or TM2 complex) during interphase and mitosis, and is required for Mad1­c-Mad2 recruitment to NPCs. Interestingly, Tpr was normally undetectable at kinetochores and dispensable for Mad1, but not for Mad2, kinetochore localization, which suggests that SAC robustness depends on Mad2 levels at kinetochores. Protein half-life measurements demonstrate that Tpr stabilizes Mad1 and Mad2, ensuring normal Mad1­c-Mad2 production in an mRNA- and kinetochore-independent manner. Overexpression of GFP-Mad2 restored normal SAC response and Mad2 kinetochore levels in Tpr-depleted cells. Mechanistically, we provide evidence that Tpr might spatially regulate SAC proteostasis through the SUMO-isopeptidases SENP1 and SENP2 at NPCs. Thus, Tpr is a kinetochore-independent, rate-limiting factor required to mount and sustain a robust SAC response.


Assuntos
Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/fisiologia , Proteínas Mad2/fisiologia , Complexo de Proteínas Formadoras de Poros Nucleares/fisiologia , Proteínas Nucleares/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Células HeLa , Humanos , Proteínas Mad2/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/fisiologia , Proteínas Proto-Oncogênicas/metabolismo
16.
Cell ; 154(2): 391-402, 2013 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-23870127

RESUMO

Mitotic spindle position defines the cell-cleavage site during cytokinesis. However, the mechanisms that control spindle positioning to generate equal-sized daughter cells remain poorly understood. Here, we demonstrate that two mechanisms act coordinately to center the spindle during anaphase in symmetrically dividing human cells. First, the spindle is positioned directly by the microtubule-based motor dynein, which we demonstrate is targeted to the cell cortex by two distinct pathways: a Gαi/LGN/NuMA-dependent pathway and a 4.1G/R and NuMA-dependent, anaphase-specific pathway. Second, we find that asymmetric plasma membrane elongation occurs in response to spindle mispositioning to alter the cellular boundaries relative to the spindle. Asymmetric membrane elongation is promoted by chromosome-derived Ran-GTP signals that locally reduce Anillin at the growing cell cortex. In asymmetrically elongating cells, dynein-dependent spindle anchoring at the stationary cell cortex ensures proper spindle positioning. Our results reveal the anaphase-specific spindle centering systems that achieve equal-sized cell division.


Assuntos
Anáfase , Membrana Celular/metabolismo , Dineínas/metabolismo , Fuso Acromático/metabolismo , Sequência de Aminoácidos , Animais , Antígenos Nucleares/metabolismo , Proteínas de Ciclo Celular , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/metabolismo , Complexo Dinactina , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Dados de Sequência Molecular , Proteínas Associadas à Matriz Nuclear/metabolismo , Alinhamento de Sequência
17.
Chromosome Res ; 21(4): 407-18, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23793898

RESUMO

Chromosomal rearrangements can radically alter gene products and their function, driving tumor formation or progression. However, the molecular origins and evolution of such rearrangements are varied and poorly understood, with cancer cells often containing multiple, complex rearrangements. One mechanism that can lead to genomic rearrangements is the formation of a "dicentric" chromosome containing two functional centromeres. Indeed, such dicentric chromosomes have been observed in cancer cells. Here, we tested the ability of a single dicentric chromosome to contribute to genomic instability and neoplastic conversion in vertebrate cells. We developed a system to transiently and reversibly induce dicentric chromosome formation on a single chromosome with high temporal control. We find that induced dicentric chromosomes are frequently damaged and mis-segregated during mitosis, and that this leads to extensive chromosomal rearrangements including translocations with other chromosomes. Populations of pre-neoplastic cells in which a single dicentric chromosome is induced acquire extensive genomic instability and display hallmarks of cellular transformation including anchorage-independent growth in soft agar. Our results suggest that a single dicentric chromosome could contribute to tumor initiation.


Assuntos
Carcinogênese/genética , Aberrações Cromossômicas , Rearranjo Gênico , Genômica/métodos , Animais , Linhagem Celular Tumoral , Centrômero/genética , Imunofluorescência , Instabilidade Genômica , Hibridização in Situ Fluorescente , Camundongos , Mitose/genética , Translocação Genética
18.
EMBO J ; 32(3): 424-36, 2013 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-23334297

RESUMO

The kinetochore forms a dynamic interface with microtubules from the mitotic spindle during mitosis. The Ndc80 complex acts as the key microtubule-binding complex at kinetochores. However, it is unclear how the Ndc80 complex associates with the inner kinetochore proteins that assemble upon centromeric chromatin. Here, based on a high-resolution structural analysis, we demonstrate that the N-terminal region of vertebrate CENP-T interacts with the 'RWD' domain in the Spc24/25 portion of the Ndc80 complex. Phosphorylation of CENP-T strengthens a cryptic hydrophobic interaction between CENP-T and Spc25 resulting in a phospho-regulated interaction that occurs without direct recognition of the phosphorylated residue. The Ndc80 complex interacts with both CENP-T and the Mis12 complex, but we find that these interactions are mutually exclusive, supporting a model in which two distinct pathways target the Ndc80 complex to kinetochores. Our results provide a model for how the multiple protein complexes at kinetochores associate in a phospho-regulated manner.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Animais , Calorimetria , Linhagem Celular Tumoral , Galinhas , Cromatografia em Gel , Proteínas Cromossômicas não Histona/química , Cristalização , Proteínas do Citoesqueleto , Humanos , Cinetocoros/química , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/química , Complexos Multiproteicos/química , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Fosforilação , Especificidade da Espécie
19.
J Cell Biol ; 199(2): 285-301, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23045552

RESUMO

Accurate chromosome segregation during mitosis relies on a dynamic kinetochore (KT)-microtubule (MT) interface that switches from a labile to a stable condition in response to correct MT attachments. This transition is essential to satisfy the spindle-assembly checkpoint (SAC) and couple MT-generated force with chromosome movements, but the underlying regulatory mechanism remains unclear. In this study, we show that during mitosis the MT- and KT-associated protein CLASP2 is progressively and distinctively phosphorylated by Cdk1 and Plk1 kinases, concomitant with the establishment of KT-MT attachments. CLASP2 S1234 was phosphorylated by Cdk1, which primed CLASP2 for association with Plk1. Plk1 recruitment to KTs was enhanced by CLASP2 phosphorylation on S1234. This was specifically required to stabilize KT-MT attachments important for chromosome alignment and to coordinate KT and non-KT MT dynamics necessary to maintain spindle bipolarity. CLASP2 C-terminal phosphorylation by Plk1 was also required for chromosome alignment and timely satisfaction of the SAC. We propose that Cdk1 and Plk1 mediate a fine CLASP2 "phospho-switch" that temporally regulates KT-MT attachment stability.


Assuntos
Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Linhagem Celular Tumoral , Segregação de Cromossomos , Células HeLa , Humanos , Pontos de Checagem da Fase M do Ciclo Celular , Mitose , Fosforilação , Fuso Acromático/metabolismo , Quinase 1 Polo-Like
20.
Nat Cell Biol ; 14(3): 311-7, 2012 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-22327364

RESUMO

Mitotic spindle positioning by cortical pulling forces defines the cell division axis and location, which is critical for proper cell division and development. Although recent work has identified developmental and extrinsic cues that regulate spindle orientation, the contribution of intrinsic signals to spindle positioning and orientation remains unclear. Here, we demonstrate that cortical force generation in human cells is controlled by distinct spindle-pole- and chromosome-derived signals that regulate cytoplasmic dynein localization. First, dynein exhibits a dynamic asymmetric cortical localization that is negatively regulated by spindle-pole proximity, resulting in spindle oscillations to centre the spindle within the cell. We find that this signal comprises the spindle-pole-localized polo-like kinase (Plk1), which regulates dynein localization by controlling the interaction between dynein-dynactin and its upstream cortical targeting factors NuMA and LGN. Second, a chromosome-derived RanGTP gradient restricts the localization of NuMA-LGN to the lateral cell cortex to define and maintain the spindle orientation axis. RanGTP acts in part through the nuclear localization sequence of NuMA to locally alter the ability of NuMA-LGN to associate with the cell cortex in the vicinity of chromosomes. We propose that these chromosome- and spindle-pole-derived gradients generate an intrinsic code to control spindle position and orientation.


Assuntos
Segregação de Cromossomos/fisiologia , Mitose/fisiologia , Transdução de Sinais/fisiologia , Fuso Acromático/fisiologia , Sequência de Aminoácidos , Animais , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Western Blotting , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centríolos/metabolismo , Centríolos/fisiologia , Dineínas do Citoplasma/genética , Dineínas do Citoplasma/metabolismo , Complexo Dinactina , Dineínas/genética , Dineínas/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Células NIH 3T3 , Proteínas Associadas à Matriz Nuclear/genética , Proteínas Associadas à Matriz Nuclear/metabolismo , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Interferência de RNA , Fuso Acromático/metabolismo , Proteína ran de Ligação ao GTP/genética , Proteína ran de Ligação ao GTP/metabolismo , Quinase 1 Polo-Like
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA