Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2269, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480682

RESUMO

Primary familial brain calcification (PFBC) is characterized by calcium deposition in the brain, causing progressive movement disorders, psychiatric symptoms, and cognitive decline. PFBC is a heterogeneous disorder currently linked to variants in six different genes, but most patients remain genetically undiagnosed. Here, we identify biallelic NAA60 variants in ten individuals from seven families with autosomal recessive PFBC. The NAA60 variants lead to loss-of-function with lack of protein N-terminal (Nt)-acetylation activity. We show that the phosphate importer SLC20A2 is a substrate of NAA60 in vitro. In cells, loss of NAA60 caused reduced surface levels of SLC20A2 and a reduction in extracellular phosphate uptake. This study establishes NAA60 as a causal gene for PFBC, provides a possible biochemical explanation of its disease-causing mechanisms and underscores NAA60-mediated Nt-acetylation of transmembrane proteins as a fundamental process for healthy neurobiological functioning.


Assuntos
Encefalopatias , Humanos , Acetilação , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encefalopatias/genética , Padrões de Herança , Mutação , Fosfatos/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo
2.
Alzheimers Dement (Amst) ; 13(1): e12186, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33969176

RESUMO

INTRODUCTION: We investigated the frequency, neuropathology, and phenotypic characteristics of spastic paraplegia (SP) that precedes dementia in presenilin 1 (PSEN1) related familial Alzheimer's disease (AD). METHODS: We performed whole exome sequencing (WES) in 60 probands with hereditary spastic paraplegia (HSP) phenotype that was negative for variants in known HSP-related genes. Where PSEN1 mutation was identified, brain biopsy was performed. We investigated the link between HSP and AD with PSEN1 in silico pathway analysis and measured in vivo the stability of PSEN1 mutant γ-secretase. RESULTS: We identified a PSEN1 variant (p.Thr291Pro) in an individual presenting with pure SP at 30 years of age. Three years later, SP was associated with severe, fast cognitive decline and amyloid deposition with diffuse cortical plaques on brain biopsy. Biochemical analysis of p.Thr291Pro PSEN1 revealed that although the mutation does not alter active γ-secretase reconstitution, it destabilizes γ-secretase-amyloid precursor protein (APP)/amyloid beta (Aßn) interactions during proteolysis, enhancing the production of longer Aß peptides. We then extended our analysis to all 226 PSEN1 pathogenic variants reported and show that 7.5% were associated with pure SP onset followed by cognitive decline later in the disease. We found that PSEN1 cases manifesting initially as SP have a later age of onset, are associated with mutations located beyond codon 200, and showed larger diffuse, cored plaques, amyloid-ring arteries, and severe CAA. DISCUSSION: We show that pure SP can precede dementia onset in PSEN1-related familial AD. We recommend PSEN1 genetic testing in patients presenting with SP with no variants in known HSP-related genes, particularly when associated with a family history of cognitive decline.

3.
J Neurol ; 267(9): 2705-2712, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32444983

RESUMO

OBJECTIVE: To identify the genetic cause of complex neuropathy in two siblings from a consanguineous family. METHODS: The patients were recruited from our clinic. Muscle biopsy and whole-exome sequencing (WES) were performed. Fibroblasts cell lines from the index patient, unaffected parents, and three normal controls were used for cDNA analysis and western blot. RESULTS: The index patient was a 29-year-old male with clinical phenotype of syndactyly, pes cavus, swallowing difficulties, vision problem, imbalance, and muscle weakness. The sibling had similar, but milder symptoms. Nerve conduction studies and electromyography of both patients suggested sensory-motor axonal neuropathy. Muscle biopsy showed a feature of necklace fibres. WES identified a novel homozygous frameshift deletion (c.5477-5478del; p.1826-1826del) in exon 40 of the SBF1 gene in the two siblings, while both parents and the unaffected sibling were heterozygous carriers. Functional analysis showed a markedly reduced level of MTMR5 protein encoded by SBF1 in the index case. The levels of MTMR5 protein in unaffected parents were similar to those found in controls. CONCLUSION: A novel homozygous frameshift deletion in SBF1 was identified in this family. Sensory-motor axonal neuropathy and necklace fibres in biopsy were the major features expanding the phenotypic spectrum of SBF1-related recessive syndromic neuropathy.


Assuntos
Doença de Charcot-Marie-Tooth , Mutação da Fase de Leitura , Adulto , Doença de Charcot-Marie-Tooth/genética , Genes Recessivos , Homozigoto , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Linhagem , Fenótipo , Sequenciamento do Exoma
4.
Am J Hum Genet ; 106(3): 412-421, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32142645

RESUMO

Primary familial brain calcification (PFBC) is a rare neurodegenerative disorder characterized by a combination of neurological, psychiatric, and cognitive decline associated with calcium deposition on brain imaging. To date, mutations in five genes have been linked to PFBC. However, more than 50% of individuals affected by PFBC have no molecular diagnosis. We report four unrelated families presenting with initial learning difficulties and seizures and later psychiatric symptoms, cerebellar ataxia, extrapyramidal signs, and extensive calcifications on brain imaging. Through a combination of homozygosity mapping and exome sequencing, we mapped this phenotype to chromosome 21q21.3 and identified bi-allelic variants in JAM2. JAM2 encodes for the junctional-adhesion-molecule-2, a key tight-junction protein in blood-brain-barrier permeability. We show that JAM2 variants lead to reduction of JAM2 mRNA expression and absence of JAM2 protein in patient's fibroblasts, consistent with a loss-of-function mechanism. We show that the human phenotype is replicated in the jam2 complete knockout mouse (jam2 KO). Furthermore, neuropathology of jam2 KO mouse showed prominent vacuolation in the cerebral cortex, thalamus, and cerebellum and particularly widespread vacuolation in the midbrain with reactive astrogliosis and neuronal density reduction. The regions of the human brain affected on neuroimaging are similar to the affected brain areas in the myorg PFBC null mouse. Along with JAM3 and OCLN, JAM2 is the third tight-junction gene in which bi-allelic variants are associated with brain calcification, suggesting that defective cell-to-cell adhesion and dysfunction of the movement of solutes through the paracellular spaces in the neurovascular unit is a key mechanism in CNS calcification.


Assuntos
Idade de Início , Alelos , Encefalopatias/genética , Calcinose/genética , Moléculas de Adesão Celular/genética , Genes Recessivos , Adolescente , Adulto , Animais , Encefalopatias/diagnóstico por imagem , Calcinose/diagnóstico por imagem , Criança , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Linhagem
5.
Ann Neurol ; 86(2): 225-240, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31187503

RESUMO

OBJECTIVE: To identify disease-causing variants in autosomal recessive axonal polyneuropathy with optic atrophy and provide targeted replacement therapy. METHODS: We performed genome-wide sequencing, homozygosity mapping, and segregation analysis for novel disease-causing gene discovery. We used circular dichroism to show secondary structure changes and isothermal titration calorimetry to investigate the impact of variants on adenosine triphosphate (ATP) binding. Pathogenicity was further supported by enzymatic assays and mass spectroscopy on recombinant protein, patient-derived fibroblasts, plasma, and erythrocytes. Response to supplementation was measured with clinical validated rating scales, electrophysiology, and biochemical quantification. RESULTS: We identified biallelic mutations in PDXK in 5 individuals from 2 unrelated families with primary axonal polyneuropathy and optic atrophy. The natural history of this disorder suggests that untreated, affected individuals become wheelchair-bound and blind. We identified conformational rearrangement in the mutant enzyme around the ATP-binding pocket. Low PDXK ATP binding resulted in decreased erythrocyte PDXK activity and low pyridoxal 5'-phosphate (PLP) concentrations. We rescued the clinical and biochemical profile with PLP supplementation in 1 family, improvement in power, pain, and fatigue contributing to patients regaining their ability to walk independently during the first year of PLP normalization. INTERPRETATION: We show that mutations in PDXK cause autosomal recessive axonal peripheral polyneuropathy leading to disease via reduced PDXK enzymatic activity and low PLP. We show that the biochemical profile can be rescued with PLP supplementation associated with clinical improvement. As B6 is a cofactor in diverse essential biological pathways, our findings may have direct implications for neuropathies of unknown etiology characterized by reduced PLP levels. ANN NEUROL 2019;86:225-240.


Assuntos
Mutação/genética , Polineuropatias/tratamento farmacológico , Polineuropatias/genética , Piridoxal Quinase/genética , Fosfato de Piridoxal/administração & dosagem , Complexo Vitamínico B/administração & dosagem , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Suplementos Nutricionais , Feminino , Redes Reguladoras de Genes/genética , Humanos , Masculino , Resultado do Tratamento
6.
Mov Disord ; 33(7): 1119-1129, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29603387

RESUMO

BACKGROUND: Spinocerebellar ataxia type 14 is a rare form of autosomal dominant cerebellar ataxia caused by mutations in protein kinase Cγ gene. Clinically, it presents with a slowly progressive, mainly pure cerebellar ataxia. METHODS: Using next generation sequencing, we screened 194 families with autosomal dominant cerebellar ataxia and normal polyglutamine repeats. In-depth phenotyping was performed using validated clinical rating scales neuroimaging and electrophysiological investigations. RESULTS: We identified 25 individuals from 13 families carrying pathogenic mutations in protein kinase Cγ gene. A total of 10 unique protein kinase Cγ gene mutations have been confirmed of which 5 are novel and 5 were previously described. Our data suggest that the age at onset is highly variable; disease course is slowly progressive and rarely associated with severe disability. However, one third of patients presented with a complex ataxia comprising severe focal and/or task-induced dystonia, peripheral neuropathy, parkinsonism, myoclonus, and pyramidal syndrome. The most complex phenotype is related to a missense mutation in the catalytic domain in exon 11. CONCLUSION: We present one of the largest genetically confirmed spinocerebellar ataxia type 14 cohorts contributing novel variants and clinical characterisation. We show that although protein kinase Cγ gene mutations present mainly as slowly progressive pure ataxia, more than a third of cases had a complex phenotype. Overall, our case series extends the phenotype and suggests that protein kinase Cγ gene mutations should be considered in patients with slowly progressive autosomal dominant cerebellar ataxia, particularly when myoclonus, dystonia, or mild cognitive impairment are present in the absence of polyglutamine expansion. © 2018 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Distonia/etiologia , Mutação de Sentido Incorreto/genética , Peptídeos/genética , Proteína Quinase C/genética , Ataxias Espinocerebelares/complicações , Ataxias Espinocerebelares/genética , Adulto , Idade de Início , Idoso , Pré-Escolar , Estudos de Coortes , Cisteína/genética , Progressão da Doença , Saúde da Família , Feminino , Estudos de Associação Genética , Testes Genéticos , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Fenótipo , Ataxias Espinocerebelares/diagnóstico por imagem , Adulto Jovem
7.
J Neurol Neurosurg Psychiatry ; 88(8): 681-687, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28572275

RESUMO

BACKGROUND: The hereditary spastic paraplegias (HSPs) are a rare and heterogeneous group of neurodegenerative disorders that are clinically characterised by progressive lower limb spasticity. They are classified as either 'pure' or 'complex' where spastic paraplegia is complicated with additional neurological features. Mutations in the spastin gene (SPAST) are the most common cause of HSP and typically present with a pure form. METHODS: We assessed in detail the phenotypic and genetic spectrum of SPAST-related HSP focused on 118 patients carrying SPAST mutations. RESULTS: This study, one of the largest cohorts of genetically confirmed spastin patients to date, contributes with the discovery of a significant number of novel SPAST mutations. Our data reveal a high rate of complex cases (25%), with psychiatric disorders among the most common comorbidity (10% of all SPASTpatients). Further, we identify a genotype-phenotype correlation between patients carrying loss-of-function mutations in SPAST and the presence of psychiatric disorders.


Assuntos
Adenosina Trifosfatases/genética , Análise Mutacional de DNA , Transtornos Mentais/genética , Paraplegia Espástica Hereditária/genética , Adolescente , Adulto , Idade de Início , Alelos , Criança , Pré-Escolar , Códon sem Sentido/genética , Éxons/genética , Feminino , Triagem de Portadores Genéticos , Genótipo , Humanos , Lactente , Recém-Nascido , Íntrons/genética , Masculino , Transtornos Mentais/diagnóstico , Pessoa de Meia-Idade , Mutação de Sentido Incorreto/genética , Fenótipo , Mutação Puntual/genética , Deleção de Sequência/genética , Paraplegia Espástica Hereditária/diagnóstico , Espastina , Estatística como Assunto , Reino Unido , Adulto Jovem
8.
Neurology ; 87(15): 1591-1598, 2016 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-27629089

RESUMO

OBJECTIVE: To identify genetic variants that play a role in the pathogenesis of multiple system atrophy (MSA), we undertook a genome-wide association study (GWAS). METHODS: We performed a GWAS with >5 million genotyped and imputed single nucleotide polymorphisms (SNPs) in 918 patients with MSA of European ancestry and 3,864 controls. MSA cases were collected from North American and European centers, one third of which were neuropathologically confirmed. RESULTS: We found no significant loci after stringent multiple testing correction. A number of regions emerged as potentially interesting for follow-up at p < 1 × 10-6, including SNPs in the genes FBXO47, ELOVL7, EDN1, and MAPT. Contrary to previous reports, we found no association of the genes SNCA and COQ2 with MSA. CONCLUSIONS: We present a GWAS in MSA. We have identified several potentially interesting gene loci, including the MAPT locus, whose significance will have to be evaluated in a larger sample set. Common genetic variation in SNCA and COQ2 does not seem to be associated with MSA. In the future, additional samples of well-characterized patients with MSA will need to be collected to perform a larger MSA GWAS, but this initial study forms the basis for these next steps.


Assuntos
Atrofia de Múltiplos Sistemas/genética , Alquil e Aril Transferases/genética , Encéfalo/metabolismo , Encéfalo/patologia , Estudos de Coortes , Europa (Continente) , Loci Gênicos , Estudo de Associação Genômica Ampla , Técnicas de Genotipagem , Humanos , Atrofia de Múltiplos Sistemas/metabolismo , Atrofia de Múltiplos Sistemas/patologia , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/metabolismo , Estados Unidos , População Branca/genética , alfa-Sinucleína/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA