Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
PLoS One ; 19(8): e0297250, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39106253

RESUMO

Coriander (Coriandrum sativum L.) is a member of the Umbelliferae/Apiaceae family and one of the well-known essential oil-containing plants, in which the seeds are used in traditional medicine, and as flavoring in food preparation. Knowing the diverse chemical components of different parts of the plant, this work aims to investigate the antioxidant, the anti-inflammatory, and the immunostimulatory modulator effects of the Jordanian C. sativum's seed extracted essential oil (JCEO). Coriander oil extract was prepared by hydro-distillation method using the Clevenger apparatus. Different concentrations of coriander oil were examined by using DPPH radical scavenging assay, MTT assay, pro-inflammatory cytokine (Tumor Necrosis Factor-TNF-alpha) production in RAW264.7 murine macrophages in addition, scratch-wound assessment, NO level examination, Th1/Th2 assay, phagocytosis assay, and fluorescence imaging using DAPI stain were conducted. JCEO had a potential metabolic enhancer effect at a concentration of 0.3 mg/mL on cell viability with anti-inflammatory activities via increasing cytokines like IL-10, IL-4, and limiting NO, INF-γ, and TNF-α release into cell supernatant. Antioxidant activity was seen significantly at higher concentrations of JCEO reaching 98.7% when using 100mg/mL and minimally reaching 50% at 12.5mg/mL of the essential oil. Treated macrophages were able to attain full scratch closure after 48-hrs at concentrations below 0.3mg/mL. The seed-extracted JCEO showed significant free radical scavenging activity even at lower dilutions. It also significantly induced an anti-inflammatory effect via an increase in the release of cytokines but reduced the LPS-induced NO and TNF-α production at 0.16-0.3mg/mL. In summary, coriander essential oil demonstrated antioxidant, anti-inflammatory, and immunostimulatory effects, showcasing its therapeutic potential at specific concentrations. The findings underscore its safety and metabolic enhancement properties, emphasizing its promising role in promoting cellular health.


Assuntos
Anti-Inflamatórios , Antioxidantes , Coriandrum , Macrófagos , Óleos Voláteis , Sementes , Animais , Camundongos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Sementes/química , Antioxidantes/farmacologia , Coriandrum/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Células RAW 264.7 , Fator de Necrose Tumoral alfa/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Óxido Nítrico/metabolismo , Fagocitose/efeitos dos fármacos , Citocinas/metabolismo , Jordânia
2.
Pathol Res Pract ; 260: 155378, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38850880

RESUMO

Understanding the underlying mechanisms of breast cancer metastasis is of vital importance for developing treatment approaches. This review emphasizes contemporary breakthrough studies with special focus on breast cancer brain metastasis. Acquired mutational changes in metastatic lesions are often distinct from the primary tumor, suggesting altered mutagenesis pathways. The concept of micrometastases and heterogeneity within the tumors unravels novel therapeutic targets at genomic and molecular levels through epigenetic and proteomic profiling. Several pre-clinical studies have identified mechanisms involving the immune system, where tumor associated macrophages are key players. Expression of cell proteins like Syndecan1, fatty acid-binding protein 7 and tropomyosin kinase receptor B have been implicated in aiding the transmigration of breast cancer cells to the brain. Changes in the proteomic landscape of the blood-brain-barrier show altered permeability characteristics, supporting entry of cancer cells. Findings from laboratory studies pave the path for the emergence of new biomarkers, especially blood-based miRNA and circulating tumor cell markers for prognostic staging. The constantly evolving therapeutics call for clinical trials backing supportive evidence of efficacies of both novel and existing approaches. The challenge lying ahead is discovering innovative techniques to replace use of human samples and optimize small-scale patient recruitment in trials.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Humanos , Neoplasias da Mama/patologia , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/patologia , Feminino , Biomarcadores Tumorais/metabolismo , Animais
3.
Pathol Res Pract ; 260: 155387, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38870713

RESUMO

Lung cancer (LC) is the leading cause of cancer-related mortality, and it is caused by many factors including cigarette smoking. Despite numerous treatment strategies for LC, its five-year survival is still poor (<20 %), attributable to treatment resistance and lack of early diagnosis and intervention. Importantly, LC incidence is higher in patients affected by chronic respiratory diseases (CRDs) such as asthma and chronic obstructive pulmonary disorder (COPD), and LC shares with other CRDs common pathophysiological features including chronic inflammation, oxidative stress, cellular senescence, and airway remodelling. Remodelling is a complex process resulting from the aberrant activation of tissue repair secondary to chronic inflammation, oxidative stress, and tissue damage observed in the airways of CRD patients, and it is characterized by irreversible airway structural and functional alterations, concomitantly with tissue fibrosis, epithelial-to-mesenchymal transition (EMT), excessive collagen deposition, and thickening of the basement membrane. Many processes involved in remodelling, particularly EMT, are also fundamental for LC pathogenesis, highlighting a potential connection between CRDs and LC. This provides rationale for the development of novel treatment strategies aimed at targeting components of the remodelling pathways. In this study, we tested the in vitro therapeutic activity of rat fecal microbiome extract (FME) on A549 human lung adenocarcinoma cells. We show that treatment with FME significantly downregulates the expression of six proteins whose function is at the forefront between airway remodelling and LC development: Snail, SPARC, MUC-1, Osteopontin, MMP-2, and HIF-1α. The results of this study, if confirmed by further investigations, provide proof-of-concept for a novel approach in the treatment of LC, focused on tackling the airway remodelling mechanisms underlying the increased susceptibility to develop LC observed in CRD patients.


Assuntos
Remodelação das Vias Aéreas , Regulação para Baixo , Neoplasias Pulmonares , Remodelação das Vias Aéreas/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Animais , Ratos , Células A549 , Fezes/microbiologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Microbiota/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos
4.
Arch Bronconeumol ; 2024 May 06.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-38755052

RESUMO

Lung cancer remains the leading cause of cancer-related deaths worldwide. According to the American Cancer Society (ACS), it ranks as the second most prevalent type of cancer globally. Recent findings have highlighted bidirectional gut-lung interactions, known as the gut-lung axis, in the pathophysiology of lung cancer. Probiotics are live microorganisms that boost host immunity when consumed adequately. The immunoregulatory mechanisms of probiotics are thought to operate through the generation of various metabolites that impact both the gut and distant organs (e.g., the lungs) through blood. Several randomized controlled trials have highlighted the pivotal role of probiotics in gut health especially for the prevention and treatment of malignancies, with a specific emphasis on lung cancer. Current research indicates that probiotic supplementation positively affects patients, leading to a suppression in cancer symptoms and a shortened disease course. While clinical trials validate the therapeutic benefits of probiotics, their precise mechanism of action remains unclear. This narrative review aims to provide a comprehensive overview of the present landscape of probiotics in the management of lung cancer.

5.
Pathol Res Pract ; 258: 155303, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38728793

RESUMO

Hepatocellular carcinoma (HCC) is among the primary reasons for fatalities caused by cancer globally, highlighting the need for comprehensive knowledge of its molecular aetiology to develop successful treatment approaches. The PI3K/Akt system is essential in the course of HCC, rendering it an intriguing candidate for treatment. Non-coding RNAs (ncRNAs), such as long ncRNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), are important mediators of the PI3K/Akt network in HCC. The article delves into the complex regulatory functions of ncRNAs in influencing the PI3K/Akt system in HCC. The study explores how lncRNAs, miRNAs, and circRNAs impact the expression as well as the function of the PI3K/Akt network, either supporting or preventing HCC growth. Additionally, treatment strategies focusing on ncRNAs in HCC are examined, such as antisense oligonucleotide-based methods, RNA interference, and small molecule inhibitor technologies. Emphasizing the necessity of ensuring safety and effectiveness in clinical settings, limitations, and future approaches in using ncRNAs as therapies for HCC are underlined. The present study offers useful insights into the complex regulation system of ncRNAs and the PI3K/Akt cascade in HCC, suggesting possible opportunities for developing innovative treatment approaches to address this lethal tumor.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , RNA não Traduzido , Transdução de Sinais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Transdução de Sinais/genética , RNA não Traduzido/genética , Regulação Neoplásica da Expressão Gênica/genética , RNA Circular/genética , RNA Circular/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
6.
Pathol Res Pract ; 257: 155295, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38603841

RESUMO

Tobacco smoking is a leading cause of preventable mortality, and it is the major contributor to diseases such as COPD and lung cancer. Cigarette smoke compromises the pulmonary antiviral immune response, increasing susceptibility to viral infections. There is currently no therapy that specifically addresses the problem of impaired antiviral response in cigarette smokers and COPD patients, highlighting the necessity to develop novel treatment strategies. 18-ß-glycyrrhetinic acid (18-ß-gly) is a phytoceutical derived from licorice with promising anti-inflammatory, antioxidant, and antiviral activities whose clinical application is hampered by poor solubility. This study explores the therapeutic potential of an advanced drug delivery system encapsulating 18-ß-gly in poly lactic-co-glycolic acid (PLGA) nanoparticles in addressing the impaired antiviral immunity observed in smokers and COPD patients. Exposure of BCi-NS1.1 human bronchial epithelial cells to cigarette smoke extract (CSE) resulted in reduced expression of critical antiviral chemokines (IP-10, I-TAC, MIP-1α/1ß), mimicking what happens in smokers and COPD patients. Treatment with 18-ß-gly-PLGA nanoparticles partially restored the expression of these chemokines, demonstrating promising therapeutic impact. The nanoparticles increased IP-10, I-TAC, and MIP-1α/1ß levels, exhibiting potential in attenuating the negative effects of cigarette smoke on the antiviral response. This study provides a novel approach to address the impaired antiviral immune response in vulnerable populations, offering a foundation for further investigations and potential therapeutic interventions. Further studies, including a comprehensive in vitro characterization and in vivo testing, are warranted to validate the therapeutic efficacy of 18-ß-gly-PLGA nanoparticles in respiratory disorders associated with compromised antiviral immunity.


Assuntos
Ácido Glicirretínico , Nanopartículas , Humanos , Ácido Glicirretínico/farmacologia , Ácido Glicirretínico/análogos & derivados , Antivirais/farmacologia , Fumaça/efeitos adversos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Linhagem Celular , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/imunologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/virologia , Fumar Cigarros/efeitos adversos
7.
Chem Biol Interact ; 395: 111009, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38641145

RESUMO

The escalating prevalence of lung diseases underscores the need for innovative therapies. Dysbiosis in human body microbiome has emerged as a significant factor in these diseases, indicating a potential role for synbiotics in restoring microbial equilibrium. However, effective delivery of synbiotics to the target site remains challenging. Here, we aim to explore suitable nanoparticles for encapsulating synbiotics tailored for applications in lung diseases. Nanoencapsulation has emerged as a prominent strategy to address the delivery challenges of synbiotics in this context. Through a comprehensive review, we assess the potential of nanoparticles in facilitating synbiotic delivery and their structural adaptability for this purpose. Our review reveals that nanoparticles such as nanocellulose, starch, and chitosan exhibit high potential for synbiotic encapsulation. These offer flexibility in structure design and synthesis, making them promising candidates for addressing delivery challenges in lung diseases. Furthermore, our analysis highlights that synbiotics, when compared to probiotics alone, demonstrate superior anti-inflammatory, antioxidant, antibacterial and anticancer activities. This review underscores the promising role of nanoparticle-encapsulated synbiotics as a targeted and effective therapeutic approach for lung diseases, contributing valuable insights into the potential of nanomedicine in revolutionizing treatment strategies for respiratory conditions, ultimately paving the way for future advancements in this field.


Assuntos
Pneumopatias , Simbióticos , Humanos , Pneumopatias/tratamento farmacológico , Nanoestruturas/química , Pulmão/efeitos dos fármacos , Pulmão/patologia , Animais , Nanopartículas/química
8.
Sci Rep ; 14(1): 7126, 2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531887

RESUMO

Probiotics are a mixture of beneficial live bacteria and/or yeasts that naturally exist in our bodies. Recently, numerous studies have focused on the immunostimulatory effects of single-species or killed multi-species probiotic conditioned mediums on macrophages. This study investigates the immunostimulatory effect of commercially available active, multi-species probiotic conditioned medium (CM) on RAW264.7 murine macrophages. The probiotic CM was prepared by culturing the commercially available probiotic in a cell-culture medium overnight at 37 °C, followed by centrifugation and filter-sterilization to be tested on macrophages. The immunostimulatory effect of different dilution percentages (50%, 75%, 100%) of CM was examined using the MTT assay, proinflammatory cytokine (tumor necrosis factor TNF-alpha) production in macrophages, migration, and phagocytosis assays. For all the examined CM ratios, the percentages of cell viability were > 80%. Regarding the migration scratch, TNF-alpha and phagocytosis assays, CM demonstrated a concentration-dependent immunostimulatory effect. However, the undiluted CM (100%) showed a significant (p-value < 0.05) stimulatory effect compared to the positive and negative controls. The findings suggest that the secretions and products of probiotics, as measured in the CM, may be closely associated with their immune-boosting effects. Understanding this relationship between probiotic secretions and immune function is crucial for further exploring the potential benefits of probiotics in enhancing overall health and well-being.


Assuntos
Probióticos , Fator de Necrose Tumoral alfa , Camundongos , Animais , Meios de Cultivo Condicionados/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Macrófagos , Imunidade , Probióticos/farmacologia
10.
Biomed Pharmacother ; 173: 116275, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38394846

RESUMO

Tumour suppressor genes play a cardinal role in the development of a large array of human cancers, including lung cancer, which is one of the most frequently diagnosed cancers worldwide. Therefore, extensive studies have been committed to deciphering the underlying mechanisms of alterations of tumour suppressor genes in governing tumourigenesis, as well as resistance to cancer therapies. In spite of the encouraging clinical outcomes demonstrated by lung cancer patients on initial treatment, the subsequent unresponsiveness to first-line treatments manifested by virtually all the patients is inherently a contentious issue. In light of the aforementioned concerns, this review compiles the current knowledge on the molecular mechanisms of some of the tumour suppressor genes implicated in lung cancer that are either frequently mutated and/or are located on the chromosomal arms having high LOH rates (1p, 3p, 9p, 10q, 13q, and 17p). Our study identifies specific genomic loci prone to LOH, revealing a recurrent pattern in lung cancer cases. These loci, including 3p14.2 (FHIT), 9p21.3 (p16INK4a), 10q23 (PTEN), 17p13 (TP53), exhibit a higher susceptibility to LOH due to environmental factors such as exposure to DNA-damaging agents (carcinogens in cigarette smoke) and genetic factors such as chromosomal instability, genetic mutations, DNA replication errors, and genetic predisposition. Furthermore, this review summarizes the current treatment landscape and advancements for lung cancers, including the challenges and endeavours to overcome it. This review envisages inspired researchers to embark on a journey of discovery to add to the list of what was known in hopes of prompting the development of effective therapeutic strategies for lung cancer.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Perda de Heterozigosidade , Genes Supressores de Tumor , Mutação/genética , Transformação Celular Neoplásica/genética
11.
Naunyn Schmiedebergs Arch Pharmacol ; 397(1): 343-356, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37439806

RESUMO

Lung cancer is the second most prevalent type of cancer and is responsible for the highest number of cancer-related deaths worldwide. Non-small-cell lung cancer (NSCLC) makes up the majority of lung cancer cases. Zerumbone (ZER) is natural compound commonly found in the roots of Zingiber zerumbet which has recently demonstrated anti-cancer activity in both in vitro and in vivo studies. Despite their medical benefits, ZER has low aqueous solubility, poor GI absorption and oral bioavailability that hinders its effectiveness. Liquid crystalline nanoparticles (LCNs) are novel drug delivery carrier that have tuneable characteristics to enhance and ease the delivery of bioactive compounds. This study aimed to formulate ZER-loaded LCNs and investigate their effectiveness against NSCLC in vitro using A549 lung cancer cells. ZER-LCNs, prepared in the study, inhibited the proliferation and migration of A549 cells. These inhibitory effects were superior to the effects of ZER alone at a concentration 10 times lower than that of free ZER, demonstrating a potent anti-cancer activity of ZER-LCNs. The underlying mechanisms of the anti-cancer effects by ZER-LCNs were associated with the transcriptional regulation of tumor suppressor genes P53 and PTEN, and metastasis-associated gene KRT18. The protein array data showed downregulation of several proliferation associated proteins such as AXL, HER1, PGRN, and BIRC5 and metastasis-associated proteins such as DKK1, CAPG, CTSS, CTSB, CTSD, and PLAU. This study provides evidence of potential for increasing the potency and effectiveness of ZER with LCN formulation and developing ZER-LCNs as a treatment strategy for mitigation and treatment of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Nanopartículas , Sesquiterpenos , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Neoplasias Pulmonares/tratamento farmacológico , Apoptose , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico , Proliferação de Células
12.
Artigo em Inglês | MEDLINE | ID: mdl-37183464

RESUMO

BACKGROUND: In the last few decades, it has been largely perceived that the factors affecting the immune system and its varying pathways lead to the pathological progression of inflammation and inflammatory conditions. Chronic inflammation also contributes to common diseases, such as diabetes mellitus, ischemic heart disease, cancer, chronic renal inflammatory disease, non-alcoholic fatty hepat-ic disease, autoimmune diseases and neurodegenerative diseases. OBJECTIVE: Interestingly, plant sources and secondary metabolites from plants have been increasingly employed in managing acute and chronic inflammatory diseases for centuries. Boswellic acids are pentacyclic triterpenoidal moieties obtained from the oleo gum resin of different Boswellia species. METHODS: Detailed data was collected revealing the anti-inflammatory potential of Boswellic acids through various databases. RESULT: These are pharmacologically active agents that possess promising anti-inflammatory, anti-arthritic, antirheumatic, anti-diarrheal, anti-hyperlipidemic, anti-asthmatic, anti-cancer, and anti-microbial effects. CONCLUSION: Boswellic acids have been in use since ancient times primarily to treat acute and chronic inflammatory diseases. This review discusses the various mechanisms underlying the inflammatory process and the necessity of such natural products as a medication to treat inflammatory diseases. In addition, a discussion has also been extended to understand the primary targets involved in inflammation. The review further explores the therapeutic potential of boswellic acids in.


Assuntos
Anti-Inflamatórios , Extratos Vegetais , Humanos , Extratos Vegetais/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico , Fatores Imunológicos/uso terapêutico , Sistema Imunitário
13.
Biofactors ; 50(2): 232-249, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37702264

RESUMO

Piceatannol is a naturally occurring hydroxylated resveratrol analogue that can be found in a variety of fruits and vegetables. It has been documented to have a wide range of beneficial effects, including anti-inflammatory, antioxidant, anti-aging, anti-allergic, antidiabetic, neuroprotective, cardioprotective, and chemopreventive properties. Piceatannol has significantly higher antioxidant activity than resveratrol. Piceatannol has been shown in preclinical studies to have the ability to inhibit or reduce the growth of cancers in various organs such as the brain, breast, lung, colon, cervical, liver, prostate, and skin. However, the bioavailability of Piceatannol is comparatively lower than resveratrol and other stilbenes. Several approaches have been reported in recent years to enhance its bioavailability and biological activity, and clinical trials are required to validate these findings. This review focuses on several aspects of natural stilbene Piceatannol, its chemistry, and its mechanism of action, and its promising therapeutic potential for the prevention and treatment of a wide variety of complex human diseases.


Assuntos
Doenças não Transmissíveis , Estilbenos , Humanos , Resveratrol/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Estilbenos/farmacologia , Estilbenos/uso terapêutico , Estilbenos/química
14.
Naunyn Schmiedebergs Arch Pharmacol ; 397(4): 2465-2483, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-37851060

RESUMO

The purpose of this study was to evaluate the potential of zerumbone-loaded liquid crystalline nanoparticles (ZER-LCNs) in the protection of broncho-epithelial cells and alveolar macrophages against oxidative stress, inflammation and senescence induced by cigarette smoke extract in vitro. The effect of the treatment of ZER-LCNs on in vitro cell models of cigarette smoke extract (CSE)-treated mouse RAW264.7 and human BCi-NS1.1 basal epithelial cell lines was evaluated for their anti-inflammatory, antioxidant and anti-senescence activities using colorimetric and fluorescence-based assays, fluorescence imaging, RT-qPCR and proteome profiler kit. The ZER-LCNs successfully reduced the expression of pro-inflammatory markers including Il-6, Il-1ß and Tnf-α, as well as the production of nitric oxide in RAW 264.7 cells. Additionally, ZER-LCNs successfully inhibited oxidative stress through reduction of reactive oxygen species (ROS) levels and regulation of genes, namely GPX2 and GCLC in BCi-NS1.1 cells. Anti-senescence activity of ZER-LCNs was also observed in BCi-NS1.1 cells, with significant reductions in the expression of SIRT1, CDKN1A and CDKN2A. This study demonstrates strong in vitro anti-inflammatory, antioxidative and anti-senescence activities of ZER-LCNs paving the path for this formulation to be translated into a promising therapeutic agent for chronic respiratory inflammatory conditions including COPD and asthma.


Assuntos
Fumar Cigarros , Nanopartículas , Sesquiterpenos , Animais , Humanos , Camundongos , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Inflamação , NF-kappa B/metabolismo , Estresse Oxidativo
16.
Artigo em Inglês | MEDLINE | ID: mdl-38078921

RESUMO

Asthma, lung cancer, cystic fibrosis, tuberculosis, acute respiratory distress syndrome, chronic obstructive pulmonary disease, and COVID-19 are few examples of inflammatory lung conditions that cause cytokine release syndrome. It can initiate a widespread inflammatory response and may activate several inflammatory pathways that cause multiple organ failures leading to increased number of deaths and increased prevalence rates around the world. Nanotechnology-based therapeutic modalities such as nanoparticles, liposomes, nanosuspension, monoclonal antibodies, and vaccines can be used in the effective treatment of inflammatory lung diseases at both cellular and molecular levels. This would also help significantly in the reduction of patient mortality. Therefore, nanotechnology could be a potent platform for repurposing current medications in the treatment of inflammatory lung diseases. The aim and approach of this article are to highlight the clinical manifestations of cytokine storm in inflammatory lung diseases along with the advances and potential applications of nanotechnology-based therapeutics in the management of cytokine storm. Further in-depth studies are required to understand the molecular pathophysiology, and how nanotechnology-based therapeutics can help to effectively combat this problem.

17.
Artigo em Inglês | MEDLINE | ID: mdl-37991539

RESUMO

Lung cancer (LC) and chronic obstructive pulmonary disease (COPD) are among the leading causes of mortality worldwide. Cigarette smoking is among the main aetiologic factors for both ailments. These diseases share common pathogenetic mechanisms including inflammation, oxidative stress, and tissue remodelling. Current therapeutic approaches are limited by low efficacy and adverse effects. Consequentially, LC has a 5-year survival of < 20%, while COPD is incurable, underlining the necessity for innovative treatment strategies. Two promising emerging classes of therapy against these diseases include plant-derived molecules (phytoceuticals) and nucleic acid-based therapies. The clinical application of both is limited by issues including poor solubility, poor permeability, and, in the case of nucleic acids, susceptibility to enzymatic degradation, large size, and electrostatic charge density. Nanoparticle-based advanced drug delivery systems are currently being explored as flexible systems allowing to overcome these limitations. In this review, an updated summary of the most recent studies using nanoparticle-based advanced drug delivery systems to improve the delivery of nucleic acids and phytoceuticals for the treatment of LC and COPD is provided. This review highlights the enormous relevance of these delivery systems as tools that are set to facilitate the clinical application of novel categories of therapeutics with poor pharmacokinetic properties. This picture was generated with BioRender.

18.
Pathol Res Pract ; 251: 154895, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37879146

RESUMO

PURPOSE: Oxidative stress and inflammation are key pathophysiological features of chronic respiratory diseases, including asthma and chronic obstructive pulmonary disease (COPD). Agarwood oil obtained from Aquilaria trees has promising antioxidant and anti-inflammatory activities. However, its clinical application is hampered by poor solubility. A viable approach to overcome this involves formulation of oily constituents into emulsions. Here, we have investigated the antioxidant and anti-inflammatory potential of an agarwood oil-based nanoemulsion (DE'RAAQSIN) against lipopolysaccharide (LPS)-induced RAW264.7 mouse macrophages in vitro. METHODS: The antioxidant and anti-inflammatory activity of DE'RAAQSIN was assessed by measuring the levels of ROS and nitric oxide (NO) produced, using the DCF-DA assay and the Griess reagent assay, respectively. The molecular pathways activated by DE'RAAQSIN were investigated via qPCR. RESULTS: LPS stimulation of RAW264.7 cells increased the production of nitric oxide (NO) and ROS and resulted in the overexpression of the inducible nitric oxide synthase (iNOS) gene. Furthermore, LPS induced the upregulation of the expression of key proinflammatory genes (IL-6, TNF-α, IL-1ß, and CXCL1) and of the antioxidant gene heme oxygenase-1 (HO-1). DE'RAAQSIN demonstrated potent antioxidant and anti-inflammatory activity by significantly reducing the levels of ROS and of secreted NO, simultaneously counteracting the LPS-induced overexpression of iNOS, IL-6, TNF-α, IL-1ß, and HO-1. These findings were corroborated by in silico activity prediction and physicochemical analysis of the main agarwood oil components. CONCLUSIONS: We propose DE'RAAQSIN as a promising alternative managing inflammatory disorders, opening the platform for further studies aimed at understanding the effectiveness of DE'RAAQSIN.


Assuntos
Lipopolissacarídeos , Macrófagos , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Antioxidantes/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico/uso terapêutico , Interleucina-6/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Estresse Oxidativo , NF-kappa B/metabolismo
19.
Chem Biol Interact ; 386: 110750, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37839513

RESUMO

Hydroxychloroquine (HCQ) is a unique class of medications that has been widely utilized for the treatment of cancer. HCQ plays a dichotomous role by inhibiting autophagy induced by the tumor microenvironment (TME). Preclinical studies support the use of HCQ for anti-cancer therapy, especially in combination with conventional anti-cancer treatments since they sensitize tumor cells to drugs, potentiating the therapeutic activity. However, clinical evidence has suggested poor outcomes for HCQ due to various obstacles, including non-specific distribution, low aqueous solubility and low bioavailability at target sites, transport across tissue barriers, and retinal toxicity. These issues are addressable via the integration of HCQ with nanotechnology to produce HCQ-conjugated nanomedicines. This review aims to discuss the pharmacodynamic, pharmacokinetic and antitumor properties of HCQ. Furthermore, the antitumor performance of the nanoformulated HCQ is also reviewed thoroughly, aiming to serve as a guide for the HCQ-based enhanced treatment of cancers. The nanoencapsulation or nanoconjugation of HCQ with nanoassemblies appears to be a promising method for reducing the toxicity and improving the antitumor efficacy of HCQ.


Assuntos
Hidroxicloroquina , Neoplasias , Humanos , Hidroxicloroquina/farmacologia , Hidroxicloroquina/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Nanotecnologia , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA