Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mitochondrion ; 67: 15-37, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36176212

RESUMO

Mitochondria are one of the basic essential components for eukaryotic life survival. It is also the source of respiratory ATP. Recently published studies have demonstrated that mitochondria may have more roles to play aside from energy production. There is an increasing body of evidence which suggest that mitochondrial activities involved in normal and pathological states contribute to significant impact to the lung airway morphology and epithelial function in respiratory diseases such as asthma, COPD, and lung cancer. This review summarizes the pathophysiological pathways involved in asthma, COPD, lung cancer and highlights potential treatment strategies that target the malfunctioning mitochondria in such ailments. Mitochondria are responsive to environmental stimuli such as infection, tobacco smoke, and inflammation, which are essential in the pathogenesis of respiratory diseases. They may affect mitochondrial shape, protein production and ultimately cause dysfunction. The impairment of mitochondrial function has downstream impact on the cytosolic components, calcium control, response towards oxidative stress, regulation of genes and proteins and metabolic activities. Several novel compounds and alternative medicines that target mitochondria in asthma and chronic lung diseases have been discussed here. Moreover, mitochondrial enzymes or proteins that may serve as excellent therapeutic targets in COPD are also covered. The role of mitochondria in respiratory diseases is gaining much attention and mitochondria-based treatment strategies and personalized medicine targeting the mitochondria may materialize in the near future. Nevertheless, more in-depth studies are urgently needed to validate the advantages and efficacy of drugs that affect mitochondria in pathological states.


Assuntos
Asma , Neoplasias Pulmonares , Doença Pulmonar Obstrutiva Crônica , Humanos , Mitocôndrias/metabolismo , Pulmão/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia
2.
J Biochem Mol Toxicol ; 36(10): e23174, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35861662

RESUMO

Respiratory diseases (RDs), such as chronic obstructive pulmonary disease, cystic fibrosis, asthma, and pneumonia, are associated with significant morbidity and mortality. Treatment usually consists of antibiotics and steroids. Relevant published literature reviews, studies, and clinical trials were accessed from institutional and electronic databases. The keywords used were respiratory diseases, steroids, antibiotics, and combination of steroids and antibiotics. Selected articles and literature were carefully reviewed. Antibiotics are often prescribed as the standard therapy to manage RDs. Types of causative respiratory pathogens, spectrum of antibiotics activity, route of administration, and course of therapy determine the type of antibiotics that are prescribed. Despite being associated with good clinical outcome, treatment failure and recurrence rate are still high. In addition, antibiotic resistance has been widely reported due to bacterial mutations in response to the use of antibiotics, which render them ineffective. Nevertheless, there has been a growing demand for corticosteroids (CS) and antibiotics to treat a wide variety of diseases, including various airway diseases, due to their immunosuppressive and anti-inflammatory properties. The use of CS is well established and there are different formulations based on the diseases, such as topical administration, tablets, intravenous injections, and inhaled preparations. Both antibiotics and CS possess similar properties in terms of their anti-inflammatory effects, especially regulating cytokine release. Thus, the current review examines and discusses the different applications of antibiotics, CS, and their combination in managing various RDs. Drawbacks of these interventions are also discussed.


Assuntos
Antibacterianos , Esteroides , Corticosteroides/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Inflamatórios , Citocinas , Esteroides/uso terapêutico
3.
Eur J Pharmacol ; 919: 174821, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35151643

RESUMO

Chronic respiratory diseases have collectively become a major public health concern and have now taken form as one of the leading causes of mortality worldwide. Most chronic respiratory diseases primarily occur due to prolonged airway inflammation. In addition, critical environmental factors such as cigarette smoke, industrial pollutants, farm dust, and pollens may also exacerbate such diseases. Moreover, alterations in the genetic sequence of an individual, abnormalities in the chromosomes or immunosuppression resulting from bacterial, fungal, and viral infections may also play a key role in the pathogenesis of respiratory diseases. Over the years, multiple in vitro models have been employed as the basis of existing as well as emerging advancements in chronic respiratory disease research. These include cell lines, gene expression techniques, single cell RNA sequencing, cytometry, culture techniques, as well as serum/sputum biomarkers that can be used to elucidate the molecular mechanisms underlying these diseases, and to identify novel diagnostic and management options for these diseases. This review summarizes the current understanding of the pathogenesis of various chronic respiratory diseases derived through in vitro experimental models, where the knowledge obtained from these studies can greatly benefit researchers in the discovery and development of novel screening techniques and advanced therapeutic strategies that could be translated into clinical use in the future.


Assuntos
Modelos Teóricos , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Biomarcadores/metabolismo , Desenvolvimento de Medicamentos , Humanos , Doença Pulmonar Obstrutiva Crônica/metabolismo
4.
Chem Biol Interact ; 351: 109706, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34662570

RESUMO

The challenges and difficulties associated with conventional drug delivery systems have led to the emergence of novel, advanced targeted drug delivery systems. Therapeutic drug delivery of proteins and peptides to the lungs is complicated owing to the large size and polar characteristics of the latter. Nevertheless, the pulmonary route has attracted great interest today among formulation scientists, as it has evolved into one of the important targeted drug delivery platforms for the delivery of peptides, and related compounds effectively to the lungs, primarily for the management and treatment of chronic lung diseases. In this review, we have discussed and summarized the current scenario and recent developments in targeted delivery of proteins and peptide-based drugs to the lungs. Moreover, we have also highlighted the advantages of pulmonary drug delivery over conventional drug delivery approaches for peptide-based drugs, in terms of efficacy, retention time and other important pharmacokinetic parameters. The review also highlights the future perspectives and the impact of targeted drug delivery on peptide-based drugs in the coming decade.


Assuntos
Portadores de Fármacos/química , Pulmão/metabolismo , Peptídeos/administração & dosagem , Proteínas/administração & dosagem , Administração por Inalação , Animais , Portadores de Fármacos/administração & dosagem , Humanos , Pulmão/efeitos dos fármacos , Pneumopatias/tratamento farmacológico , Nanopartículas/administração & dosagem , Nanopartículas/química , Peptídeos/uso terapêutico , Proteínas/uso terapêutico
5.
J Food Biochem ; 45(1): e13572, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33249629

RESUMO

In this study, we had developed Naringenin-loaded liquid crystalline nanoparticles (LCNs) and investigated the anti-inflammatory and anticancer activities of Naringenin-LCNs against human airway epithelium-derived basal cells (BCi-NS1.1) and human lung epithelial carcinoma (A549) cell lines, respectively. The anti-inflammatory potential of Naringenin-LCNs evaluated by qPCR revealed a decreased expression of IL-6, IL-8, IL-1ß, and TNF-α in lipopolysaccharide-induced BCi-NS1.1 cells. The activity of LCNs was comparable to the positive control drug Fluticasone propionate (10 nM). The anticancer activity was studied by evaluating the antiproliferative (MTT and trypan blue assays), antimigratory (scratch wound healing assay, modified Boyden chamber assay, and immunoblot), and anticolony formation activity in A549 cells. Naringenin LCNs showed promising antiproliferative, antimigratory, and anticolony formation activities in A549 cells, in vitro. Therefore, based on our observations and results, we conclude that Naringenin-LCNs may be employed as a potential therapy-based intervention to ameliorate airway inflammation and to inhibit the progression of lung cancer. PRACTICAL APPLICATIONS: Naringenin was encapsulated into liquid crystalline nanoparticles, thus, attributing to their sustained-release nature. In addition, Naringenin-loaded LCNs efficiently reduced the levels of pro-inflammatory markers, namely, IL-1ß, IL-6, TNF-α, and IL-8. In addition, the Naringenin-loaded LCNs also possess potent anticancer activity, when tested in the A549 cell line, as revealed by the inhibition of proliferation and migration of cells. They also attenuated colony formation and induced apoptosis in the A549 cells. The findings from our study could form the basis for future research that may be translated into an in vivo model to validate the possible therapeutic alternative for lung cancer using Naringenin-loaded LCNs. In addition, the applications of Naringenin-loaded LCNs as an intervention would be of great interest to biological, formulation and respiratory scientists and clinicians.


Assuntos
Flavanonas , Nanopartículas , Células A549 , Anti-Inflamatórios/farmacologia , Flavanonas/farmacologia , Humanos
6.
Curr Pharm Des ; 26(36): 4580-4590, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32520681

RESUMO

Many plant-based bioactive compounds have been serving as the origin of drugs since long ago and many of them have been proven to have medicinal value against various chronic diseases, including, cancer, arthritis, hepatic diseases, type-2 diabetes and cardiovascular diseases. However, their clinical applications have been limited due to their poor water solubility, stability, low bioavailability and extensive transformation due to the first-pass metabolism. The applications of nanocarriers have been proven to be able to improve the delivery of bioactive phytoconstituents, resulting in the enhancement of various pharmacokinetic properties and thereby increasing the therapeutic value of phytoconstituents. These biocompatible nanocarriers also exert low toxicity to healthy cells. This review focuses on the uses and applications of different types of nanocarriers to enhance the delivery of phytoconstituents for the treatment of various chronic diseases, along with comparisons related to bioavailability and therapeutic efficacy of nano phytoconstituents with native phytoconstituents.


Assuntos
Nanopartículas , Preparações Farmacêuticas , Disponibilidade Biológica , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Solubilidade
7.
Eur J Pharmacol ; 879: 173139, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32343971

RESUMO

Chronic airway inflammatory diseases are characterized by persistent proinflammatory responses in the respiratory tract. Although, several treatment strategies are currently available, lifelong therapy is necessary for most of these diseases. In recent years, phytophenols, namely, flavonoids, derived from fruits and vegetables have been gaining tremendous interest and have been extensively studied due to their low toxicological profile. Naringenin is a bioflavonoid abundantly found in citrus fruits. This substance has shown notable therapeutic potential in various diseases due to its promising diverse biological activities. In this review, we have attempted to review the published studies from the available literature, discussing the molecular level mechanisms of naringenin in different experimental models of airway inflammatory diseases including asthma, chronic obstructive pulmonary disease (COPD), lung cancer, pulmonary fibrosis and cystic fibrosis. Current evidences have proposed that the anti-inflammatory properties of naringenin play a major role in ameliorating inflammatory disease states. In addition, naringenin also possesses several other biological properties. Despite the proposed mechanisms suggesting remarkable therapeutic benefits, the clinical use of naringenin is, however, hampered by its low solubility and bioavailability. Furthermore, this review also discusses on the studies that utilise nanocarriers as a drug delivery system to address the issue of poor solubility.


Assuntos
Anti-Inflamatórios/administração & dosagem , Flavanonas/administração & dosagem , Doenças Respiratórias/tratamento farmacológico , Animais , Doença Crônica , Sistemas de Liberação de Medicamentos , Humanos
8.
Drug Dev Res ; 81(4): 419-436, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32048757

RESUMO

Neutrophils are essential effector cells of immune system for clearing the extracellular pathogens during inflammation and immune reactions. Neutrophils play a major role in chronic respiratory diseases. In respiratory diseases such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, lung cancer and others, there occurs extreme infiltration and activation of neutrophils followed by a cascade of events like oxidative stress and dysregulated cellular proteins that eventually result in apoptosis and tissue damage. Dysregulation of neutrophil effector functions including delayed neutropil apoptosis, increased neutrophil extracellular traps in the pathogenesis of asthma, and chronic obstructive pulmonary disease enable neutrophils as a potential therapeutic target. Accounting to their role in pathogenesis, neutrophils present as an excellent therapeutic target for the treatment of chronic respiratory diseases. This review highlights the current status and the emerging trends in novel drug delivery systems such as nanoparticles, liposomes, microspheres, and other newer nanosystems that can target neutrophils and their molecular pathways, in the airways against infections, inflammation, and cancer. These drug delivery systems are promising in providing sustained drug delivery, reduced therapeutic dose, improved patient compliance, and reduced drug toxicity. In addition, the review also discusses emerging strategies and the future perspectives in neutrophil-based therapy.


Assuntos
Sistemas de Liberação de Medicamentos , Neutrófilos/metabolismo , Doenças Respiratórias/tratamento farmacológico , Animais , Doença Crônica , Humanos , Sistema Imunitário/imunologia , Inflamação/tratamento farmacológico , Inflamação/fisiopatologia , Neutrófilos/imunologia , Estresse Oxidativo/efeitos dos fármacos , Doenças Respiratórias/imunologia , Doenças Respiratórias/fisiopatologia
9.
J Environ Pathol Toxicol Oncol ; 38(3): 205-216, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31679308

RESUMO

Artemisia vulgaris is a traditional Chinese herb believed to have a wide range of healing properties; it is traditionally used to treat numerous health ailments. The plant is commonly called mugwort or riverside wormwood. The plant is edible, and in addition to its medicinal properties, it is also used as a culinary herb in Asian cooking in the form of a vegetable or in soup. The plant has garnered the attention of researchers in the past few decades, and several research studies have investigated its biological effects, including antioxidant, anti-inflammatory, anticancer, hypolipidemic, and antimicrobial properties. In this review, various studies on these biological effects are discussed along with the tests conducted, compounds involved, and proposed mechanisms of action. This review will be of interest to the researchers working in the field of herbal medicine, pharmacology, medical sciences, and immunology.


Assuntos
Artemisia/química , Fitoterapia , Extratos Vegetais/farmacologia , Anti-Infecciosos/farmacologia , Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Hipolipemiantes/farmacologia , Plantas Medicinais/química
10.
Curr Diab Rep ; 19(5): 22, 2019 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-30905013

RESUMO

PURPOSE OF REVIEW: Type 1 diabetes (T1D) occurs when there is destruction of beta cells within the islets of Langerhans in the pancreas due to autoimmunity. It is considered a complex disease, and different complications can surface and worsen the condition if T1D is not managed well. Since it is an incurable disease, numerous treatments and therapies have been postulated in order to control T1D by balancing hyperglycemia control while minimizing hypoglycemic episodes. The purpose of this review is to primarily look into the current state of the available immunological therapies and their advantages for the treatment of T1D. RECENT FINDINGS: Over the years, immunological therapy has become the center of attraction to treat T1D. Immunomodulatory approaches on non-antigens involving agents such as cyclosporine A, mycophenolate mofetil, anti-CD20, cytotoxic T cells, anti-TNF, anti-CD3, and anti-thymocyte globulin as well as immunomodulative approaches on antigens such as insulin, glutamic acid decarboxylase, and heat shock protein 60 have been studied. Aside from these two approaches, studies and trials have also been conducted on regulatory T cells, dendritic cells, interleukin 2, interleukin 4, M2 macrophages, and rapamycin/interleukin 2 combination therapy to test their effects on patients with T1D. Many of these agents have successfully suppressed T1D in non-obese diabetic (NOD) mice and in human trials. However, some have shown negative results. To date, the insights into the management of the immune system have been increasing rapidly to search for potential therapies and treatments for T1D. Nevertheless, some of the challenges are still inevitable. A lot of work and effort need to be put into the investigation on T1D through immunological therapy, particularly to reduce complications to improve and enhance clinical outcomes.


Assuntos
Diabetes Mellitus Tipo 1 , Animais , Humanos , Imunoterapia , Insulina , Camundongos Endogâmicos NOD , Fator de Necrose Tumoral alfa
11.
Biomed Pharmacother ; 108: 1188-1200, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30372820

RESUMO

BACKGROUND: Type 1 diabetes mellitus (T1DM) is an autoimmune disorder characterized by T cell-mediated self-destruction of insulin-secreting islet ß cells. Management of T1DM is challenging and complicated especially with conventional medications. Gene therapy has emerged as one of the potential therapeutic alternatives to treat T1DM. This review primarily focuses on the current status and the future perspectives of gene therapy in the management of T1DM. A vast number of the studies which are reported on gene therapy for the management of T1DM are done in animal models and in preclinical studies. In addition, the safety of such therapies is yet to be established in humans. Currently, there are several gene level interventions that are being investigated, notably, overexpression of genes and proteins needed against T1DM, transplantation of cells that express the genes against T1DM, stem-cells mediated gene therapy, genetic vaccination, immunological precursor cell-mediated gene therapy and vectors. METHODS: We searched the current literature through searchable online databases, journals and other library sources using relevant keywords and search parameters. Only relevant publications in English, between the years 2000 and 2018, with evidences and proper citations, were considered. The publications were then analyzed and segregated into several subtopics based on common words and content. A total of 126 studies were found suitable for this review. FINDINGS: Generally, the pros and cons of each of the gene-based therapies have been discussed based on the results collected from the literature. However, there are certain interventions that require further detailed studies to ensure their effectiveness. We have also highlighted the future direction and perspectives in gene therapy, which, researchers could benefit from.


Assuntos
Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/terapia , Terapia Genética , Animais , Ensaios Clínicos como Assunto , Diabetes Mellitus Tipo 1/prevenção & controle , Engenharia Genética , Humanos , Imunoterapia , Vacinação
12.
Biomed Pharmacother ; 102: 1127-1144, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29710531

RESUMO

OBJECTIVE: The study aims to analyze the effectiveness of bevacizumab in addressing the complications associated with gynecological cancers and evaluates effective treatments for various gynecological cancers. METHODS: The study follows a systematic review approach that has been implemented to analyze the qualitative published data from previous studies. Studies related with the trials of angiogenesis and bevacizumab were selected in the review. RESULTS: In general, the management of gynecological cancers include chemotherapy, surgery and radiation therapy. Results suggest bevacizumab as an effective treatment modality for cervical and several other cancers. Overall, bevacizumab showed promising results in improving the overall survival rate of gynecological cancer patients through the combination of bevacizumab with other chemotherapeutic agents. CONCLUSION: Bevacizumab possess less documented adverse effects when compared to other chemotherapeutic agents. The manifestation and severity of adverse effects reported varied according to the chemotherapeutic agent(s) that were used with bevacizumab in combination therapy. Overall, bevacizumab effectively improved the survival rate in patients with several gynaecological cancers.


Assuntos
Bevacizumab/uso terapêutico , Neoplasias dos Genitais Femininos/irrigação sanguínea , Neoplasias dos Genitais Femininos/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Bevacizumab/farmacologia , Ensaios Clínicos como Assunto , Feminino , Humanos , Modelos Biológicos , Neovascularização Patológica/patologia , Transdução de Sinais/efeitos dos fármacos
13.
Biomed Pharmacother ; 96: 768-781, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29054093

RESUMO

Pazopanib is a relatively new compound to be introduced into the chemotherapy field. It is thought to have decent anti-angiogenic properties, which gives an additional hope for the treatment of certain types of cancers. A systematic review solely discussing about pazopanib and its anti-angiogenic effect is yet to be published to date, despite several relevant clinical trials being conducted over the recent years. In this review, we aim to investigate the mechanism of pazopanib's anti-angiogenic effect and its effectiveness in treating several cancers. We have included, in this study, findings from electronically searchable data from randomized clinical trials, clinical studies, cohort studies and other relevant articles. A total of 352 studies were included in this review. From the studies, the effect of pazopanib in various cancers or models was observed and recorded. Study quality is indefinite, with a few decent quality articles. The most elaborately studied cancers include renal cell carcinoma, solid tumors, advanced solid tumors, soft tissue sarcoma, breast cancer and gynecological cancers. In addition, several less commonly studied cancers are included in the studies as well. Pazopanib had demonstrated its anti-angiogenic effect based on favorable results observed in cancers, which are caused by angiogenesis-related mechanisms, such as renal cell carcinoma, solid tumors, advanced solid tumors and soft tissue sarcoma. This review was conducted to study, analyze and review the anti-angiogenic properties of pazopanib in various cancers. The results obtained can provide a decent reference when considering treatment options for angiogenesis-related malignancies. Furthermore, the definite observations of the anti-angiogenic effects of pazopanib could provide newer insights leading to the future development of drugs of the same mechanism with increased efficiency and reduced adverse effects.


Assuntos
Neoplasias/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Pirimidinas/uso terapêutico , Sulfonamidas/uso terapêutico , Inibidores da Angiogênese/uso terapêutico , Humanos , Indazóis
14.
J Environ Pathol Toxicol Oncol ; 36(4): 283-291, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29431061

RESUMO

Oral delivery of insulin is one of the most promising and anticipated areas in the treatment of diabetes, primarily because it may significantly improve the quality of life of diabetics who receive insulin regularly. Several problems have been reported regarding the subcutaneous delivery of insulin, ranging from cardiovascular complications to weight gain. One of the approaches to overcoming these issues is to administer insulin through the oral route. However, there are several challenges in developing an oral route for insulin delivery; insulin has extremely poor bioavailability and a low diffusion rate through the mucus layer. A wide range of oral insulin delivery techniques have recently been researched, ranging from nanoparticles to liposomes, self-emulsifying systems, and hydrogels. These techniques have shown promising potential in the oral delivery of insulin. This review considers the current literature on the advances and challenges in the development of oral insulin.


Assuntos
Insulina/administração & dosagem , Administração Oral , Quitosana/administração & dosagem , Sistemas de Liberação de Medicamentos , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato , Concentração de Íons de Hidrogênio , Lipossomos , Nanopartículas
15.
Int J Nanomedicine ; 11: 5067-5077, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27785014

RESUMO

The aim of this study was to develop a nanostructured lipid carrier (NLC)-based hydrogel and study its potential for the topical delivery of 5-fluorouracil (5-FU). Precirol® ATO 5 (glyceryl palmitostearate) and Labrasol® were selected as the solid and liquid lipid phases, respectively. Poloxamer 188 and Solutol® HS15 (polyoxyl-15-hydroxystearate) were selected as surfactants. The developed lipid formulations were dispersed in 1% Carbopol® 934 (poly[acrylic acid]) gel medium in order to maintain the topical application consistency. The average size, zeta potential, and polydispersity index for the 5-FU-NLC were found to be 208.32±8.21 nm, -21.82±0.40 mV, and 0.352±0.060, respectively. Transmission electron microscopy study revealed that 5-FU-NLC was <200 nm in size, with a spherical shape. In vitro drug permeation studies showed a release pattern with initial burst followed by sustained release, and the rate of 5-FU permeation was significantly improved for 5-FU-NLC gel (10.27±1.82 µg/cm2/h) as compared with plain 5-FU gel (2.85±1.12 µg/cm2/h). Further, skin retention studies showed a significant retention of 5-FU from the NLC gel (91.256±4.56 µg/cm2) as compared with that from the 5-FU plain gel (12.23±3.86 µg/cm2) in the rat skin. Skin irritation was also significantly reduced with 5-FU-NLC gel as compared with 5-FU plain gel. These results show that the prepared 5-FU-loaded NLC has high potential to improve the penetration of 5-FU through the stratum corneum, with enormous retention and with minimal skin irritation, which is the prerequisite for topically applied formulations.


Assuntos
Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Fluoruracila/administração & dosagem , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Lipídeos/química , Nanoestruturas/química , Pele/efeitos dos fármacos , Administração Tópica , Animais , Antimetabólitos Antineoplásicos/administração & dosagem , Química Farmacêutica , Portadores de Fármacos/administração & dosagem , Desenho de Fármacos , Eritema/metabolismo , Eritema/prevenção & controle , Masculino , Camundongos , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Ratos , Ratos Wistar , Pele/metabolismo , Absorção Cutânea/efeitos dos fármacos , Absorção Cutânea/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA