Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Cell Death Differ ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256519

RESUMO

Immune cells modify their metabolic pathways in response to fungal infections. Nevertheless, the biochemical underpinnings need to be better understood. This study reports that fungal infection drives a switch from glycolysis to the serine synthesis pathway (SSP) and one-carbon metabolism by inducing the interaction of spleen tyrosine kinase (SYK) and phosphoglycerate dehydrogenase (PHGDH). As a result, PHGDH promotes SYK phosphorylation, leading to the recruitment of SYK to C-type lectin receptors (CLRs). The CLR/SYK complex initiates signaling cascades that lead to transcription factor activation and pro-inflammatory cytokine production. SYK activates SSP and one-carbon metabolism by inducing PHGDH activity. Then, one-carbon metabolism supports S-adenosylmethionine and histone H3 lysine 36 trimethylation to drive the production of pro-inflammatory cytokines and chemokines. These findings reveal the crosstalk between amino acid metabolism, epigenetic modification, and CLR signaling during fungal infection.

2.
Eur J Neurosci ; 60(5): 4830-4842, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39044301

RESUMO

Chemerin is an adipokine that contributes to metabolism regulation. Nucleus tractus solitarius (NTS) is the first relay station in the brain for accepting various visceral afferent activities for regulating cardiovascular activity. However, the roles of chemerin in the NTS in regulating sympathetic activity and blood pressure are almost unknown. This study aimed to determine the role and potential mechanism of chemerin in the NTS in modulating sympathetic outflow and blood pressure. Bilateral NTS microinjections were performed in anaesthetized adult male Sprague-Dawley rats. Renal sympathetic nerve activity (RSNA), mean arterial pressure (MAP) and heart rate (HR) were continuously recorded. Chemerin and its receptor chemokine-like receptor 1 (CMKLR1) were highly expressed in caudal NTS (cNTS). Microinjection of chemerin-9 to the cNTS increased RSNA, MAP and HR, which were prevented by CMKLR1 antagonist α-NETA, superoxide scavenger tempol or N-acetyl cysteine, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitors diphenyleneiodonium or apocynin. Chemerin-9 increased superoxide production and NADPH oxidase activity in the cNTS. The increased superoxide production induced by chemerin-9 was inhibited by α-NETA. The effects of cNTS microinjection of chemerin-9 on the RSNA, MAP and HR were attenuated by the pretreatment with paraventricular nucleus (PVN) microinjection of NMDA receptor antagonist MK-801 rather than AMPA/kainate receptor antagonist CNQX. These results indicate that chemerin-9 in the NTS increases sympathetic outflow, blood pressure and HR via CMKLR1-mediated NADPH oxidase activation and subsequent superoxide production in anaesthetized normotensive rats. Glutamatergic inputs in the PVN are needed for the chemerin-9-induced responses.


Assuntos
Pressão Sanguínea , Quimiocinas , Ratos Sprague-Dawley , Núcleo Solitário , Sistema Nervoso Simpático , Animais , Núcleo Solitário/efeitos dos fármacos , Núcleo Solitário/fisiologia , Núcleo Solitário/metabolismo , Masculino , Quimiocinas/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Sistema Nervoso Simpático/fisiologia , Sistema Nervoso Simpático/efeitos dos fármacos , Ratos , Receptores de Quimiocinas/metabolismo , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/administração & dosagem , NADPH Oxidases/metabolismo , Superóxidos/metabolismo
3.
J Hypertens ; 42(8): 1427-1439, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38690935

RESUMO

OBJECTIVE: Proliferation and migration of vascular smooth muscle cells (VSMCs) contribute to vascular remodeling. Asprosin, a newly discovered protein hormone, is involved in metabolic diseases. Little is known about the roles of asprosin in cardiovascular diseases. This study focused on the role and mechanism of asprosin on VSMC proliferation and migration, and vascular remodeling in a rat model of hypertension. METHODS AND RESULTS: VSMCs were obtained from the aortic media of 8-week-old male Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR). Asprosin was upregulated in the VSMCs of SHR. For in vitro studies, asprosin promoted VSMC proliferation and migration of WKY and SHR, and increased Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) activity, NOX1/2/4 protein expressions and superoxide production. Knockdown of asprosin inhibited the proliferation, migration, NOX activity, NOX1/2 expressions and superoxide production in the VSMCs of SHR. The roles of asprosin in promoting VSMC proliferation and migration were not affected by hydrogen peroxide scavenger, but attenuated by superoxide scavenger, selective NOX1 or NOX2 inhibitor. Toll-like receptor 4 (TLR4) was upregulated in SHR, TLR4 knockdown inhibited asprosin overexpression-induced proliferation, migration and oxidative stress in VSMCs of WKY and SHR. Asprosin was upregulated in arteries of SHR, and knockdown of asprosin in vivo not only attenuated oxidative stress and vascular remodeling in aorta and mesentery artery, but also caused a subsequent persistent antihypertensive effect in SHR. CONCLUSIONS: Asprosin promotes VSMC proliferation and migration via NOX-mediated superoxide production. Inhibition of endogenous asprosin expression attenuates VSMC proliferation and migration, and vascular remodeling of SHR.


Assuntos
Movimento Celular , Proliferação de Células , Hipertensão , Músculo Liso Vascular , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Transdução de Sinais , Superóxidos , Remodelação Vascular , Animais , Masculino , Superóxidos/metabolismo , Ratos , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , NADPH Oxidases/metabolismo , Hormônios Peptídicos/metabolismo , Fibrilina-1/metabolismo , Receptor 4 Toll-Like/metabolismo
4.
Biomedicines ; 9(8)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34440213

RESUMO

Oxidative stress and the migration of vascular smooth muscle cells (VSMCs) are important for vascular remodeling in a variety of vascular diseases. miR-31-5p promotes cell migration in colorectal cancer cells but inhibits cell migration in renal cell carcinoma. However, whether miR-31-5p is involved in oxidative stress and VSMC migration remains unknown. This study shows the crucial roles of miR-31-5p in oxidative stress and VSMC migration, as well as underlying mechanisms. Experiments were carried out in primary VSMCs from aortic media of Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR), as well as the A7r5 cell line. Oxidative stress was assessed by NADPH oxidase (NOX) expression, NOX activity, and reactive oxygen species (ROS) production. Cell migration was evaluated with a Boyden chamber assay and a wound healing assay. The miR-31-5p mimic and inhibitor promoted and attenuated oxidative stress and cell migration in the VSMCs of SHR, respectively. A dual-luciferase reporter assay indicated that miR-31-5p targeted the 3'UTR domain of FNDC5. The miR-31-5p level was raised and FNDC5 expression was reduced in the VSMCs of SHR compared with those of WKY. The miR-31-5p mimic reduced FNDC5 expression in the A7r5 cells and the VSMCs of both WKY and SHR, while the miR-31-5p inhibitor only increased FNDC5 expression in the VSMCs of SHR. Exogenous FNDC5 attenuated not only the oxidative stress and VSMC migration in SHR but also the roles of the miR-31-5p mimic in inducing oxidative stress and VSMC migration. These results indicate that miR-31-5p promotes oxidative stress and VSMC migration in SHR via inhibiting FNDC5 expression. The increased miR-31-5p and reduced FNDC5 in the VSMCs of SHR contribute to enhanced oxidative stress and cell migration.

5.
Oxid Med Cell Longev ; 2021: 8896226, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34422210

RESUMO

Salusin-ß is a biologically active peptide with 20 amino acids that exerts several cardiovascular activity-regulating effects, such as regulating vascular endothelial function and the proliferation of vascular smooth muscle cells. However, the regulatory effects of salusin-ß in myocardial infarction-induced chronic heart failure (CHF) are still unknown. The current study is aimed at investigating the effects of silencing salusin-ß on endothelial function, cardiac function, vascular and myocardial remodeling, and its underlying signaling pathways in CHF rats induced by coronary artery ligation. CHF and sham-operated (Sham) rats were subjected to tail vein injection of adenoviral vectors encoding salusin-ß shRNA or a control-shRNA. The coronary artery (CA), pulmonary artery (PA), and mesenteric artery (MA) were isolated from rats, and isometric tension measurements of arteries were performed. Compared with Sham rats, the plasma salusin-ß, leptin and visfatin levels and the salusin-ß protein expression levels of CA, PA, and MA were increased, while the acetylcholine- (ACh-) induced endothelium-dependent vascular relaxation of CA, PA, and MA was attenuated significantly in CHF rats and was improved significantly by salusin-ß gene knockdown. Salusin-ß knockdown also improved cardiac function and vascular and myocardial remodeling, increased endothelial nitric oxide synthase (eNOS) activity and nitric oxide (NO) levels, and decreased NAD(P)H oxidase activity, NOX-2 and NOX-4 expression, and reactive oxygen species (ROS) levels in arteries in CHF rats. The effects of salusin-ß knockdown in CHF rats were attenuated significantly by pretreatment with the NOS inhibitor L-NAME. These results indicate that silencing salusin-ß contributes to the improvement of endothelial function, cardiac function, and cardiovascular remodeling in CHF by inhibiting NAD(P)H oxidase-ROS generation and activating eNOS-NO production.


Assuntos
Insuficiência Cardíaca/prevenção & controle , Peptídeos e Proteínas de Sinalização Intercelular/química , Infarto do Miocárdio/complicações , Miócitos de Músculo Liso/fisiologia , Remodelação Vascular , Animais , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Miócitos de Músculo Liso/citologia , NADPH Oxidases/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Vasodilatação
6.
BMC Ecol Evol ; 21(1): 85, 2021 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-33993871

RESUMO

BACKGROUND: An ecological approach for managing biological invasions in agroecosystems is the selection of alternative crop species to manage the infestation of invasive alien plants through competition. In the current study, plant growth, photosynthesis, and competitive ability of the crop Helianthus tuberosus L. (Jerusalem artichoke) and the invasive alien plant Ageratina adenophora (Spreng.) R. M. King and H. Rob were compared under varying shade levels by utilizing a de Wit replacement series method. We hypothesized that H. tuberosus had higher competitive ability than A. adenophora even under shaded conditions. RESULTS: The results showed the main stem, leafstalk length, leaf area, underground biomass, and aboveground biomass of A. adenophora were significantly lower compared to H. tuberosus in monoculture although A. adenophora had a greater number of branches that were longer on average. Under full sunlight, the total shoot length (stem + branch length), main stem length and branch length of A. adenophora were significantly suppressed (P < 0.05) by increasing proportions of H. tuberosus, and the same morphological variables of H. tuberosus were significantly higher with decreasing proportions of H. tuberosus. With increasing shade rates and plant ratios, the plant height, branch, leaf, and biomass of both plants were significantly suppressed, but to a greater degree in the case of A. adenophora. The net photosynthetic rate (Pn) of H. tuberosus and A. adenophora increased gradually from July to September, then decreased in October. The Pn of H. tuberosus was consistently higher than that of A. adenophora. Although the Pn for both species was significantly reduced with increasing shade rates and plant ratios, A. adenophora experienced greater inhibition than H. tuberosus. The relative yield (RY) of A. adenophora was significantly less than 1.0 (P < 0.05) in mixed culture under all shade levels, indicating that the intraspecific competition was less than interspecific competition. The RY of H. tuberosus was significantly less than 1.0 under 40-60% shade and greater than 1.0 (P < 0.05) under 0-20% shade in mixed culture, respectively, showing that intraspecific competition was higher than interspecific competition under low shade, but the converse was true under high shade. The relative yield total (RYT) of A. adenophora and H. tuberosus was less than 1.0 in mixed culture, indicating that there was competition between the two plants. The fact that the competitive balance (CB) index of H. tuberosus was greater than zero demonstrated a higher competitive ability than A. adenophora even at the highest shade level (60%). CONCLUSIONS: Our results suggest that H. tuberosus is a promising replacement control candidate for managing infestations of A. adenophora, and could be widely used in various habitats where A. adenophora invades.


Assuntos
Ageratina , Helianthus , Biomassa , Fotossíntese , Folhas de Planta
7.
Anal Cell Pathol (Amst) ; 2021: 6697407, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33833937

RESUMO

BACKGROUND: Although accumulating evidence suggested that a molecular signature panel may be more effective for the prognosis prediction than routine clinical characteristics, current studies mainly focused on colorectal or colon cancers. No reports specifically focused on the signature panel for rectal cancers (RC). Our present study was aimed at developing a novel prognostic signature panel for RC. METHODS: Sequencing (or microarray) data and clinicopathological details of patients with RC were retrieved from The Cancer Genome Atlas (TCGA-READ) or the Gene Expression Omnibus (GSE123390, GSE56699) database. A weighted gene coexpression network was used to identify RC-related modules. The least absolute shrinkage and selection operator analysis was performed to screen the prognostic signature panel. The prognostic performance of the risk score was evaluated by survival curve analyses. Functions of prognostic genes were predicted based on the interaction proteins and the correlation with tumor-infiltrating immune cells. The Human Protein Atlas (HPA) tool was utilized to validate the protein expression levels. RESULTS: A total of 247 differentially expressed genes (DEGs) were commonly identified using TCGA and GSE123390 datasets. Brown and yellow modules (including 77 DEGs) were identified to be preserved for RC. Five DEGs (ASB2, GPR15, PRPH, RNASE7, and TCL1A) in these two modules constituted the optimal prognosis signature panel. Kaplan-Meier curve analysis showed that patients in the high-risk group had a poorer prognosis than those in the low-risk group. Receiver operating characteristic (ROC) curve analysis demonstrated that this risk score had high predictive accuracy for unfavorable prognosis, with the area under the ROC curve of 0.915 and 0.827 for TCGA and GSE56699 datasets, respectively. This five-mRNA classifier was an independent prognostic factor. Its predictive accuracy was also higher than all clinical factor models. A prognostic nomogram was developed by integrating the risk score and clinical factors, which showed the highest prognostic power. ASB2, PRPH, and GPR15/TCL1A were predicted to function by interacting with CASQ2/PDK4/EPHA67, PTN, and CXCL12, respectively. TCL1A and GPR15 influenced the infiltration levels of B cells and dendritic cells, while the expression of PRPH was positively associated with the abundance of macrophages. HPA analysis supported the downregulation of PRPH, RNASE7, CASQ2, EPHA6, and PDK4 in RC compared with normal controls. CONCLUSION: Our immune-related signature panel may be a promising prognostic indicator for RC.


Assuntos
Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica/métodos , Neoplasias Retais/genética , Transcriptoma , Biomarcadores Tumorais/imunologia , Redes Reguladoras de Genes , Humanos , Prognóstico , Neoplasias Retais/patologia
8.
Front Physiol ; 12: 622954, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897447

RESUMO

PURPOSE: Salusin-ß, a multifunctional vasoactive peptide, has a potentially important function in the pathological development of hypertension. However, the exact functional role of salusin-ß and the underlying mechanism in this process are still not fully understood. The current study aimed to investigate the effects of silencing salusin-ß on vascular function and vascular remodeling, as well as its signaling pathways in spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats (WKY). METHODS: Silencing salusin-ß was performed by caudal vein injection of adenovirus expressing salusin-ß short hairpin RNA (shRNA). Acetylcholine (ACh)-induced endothelium-dependent relaxation was used to evaluate vasodilator function, and high K+ solution-induced constriction was used to evaluate vasoconstriction function. RESULTS: Salusin-ß levels in plasma and its protein expression in mesenteric artery (MA), coronary artery (CA), and pulmonary artery (PA) of SHR were higher than those in WKY. The salusin-ß level and expression were decreased effectively by salusin-ß shRNA. Knockdown of salusin-ß decreased arterial blood pressure (ABP) and high K+ solution-induced vascular constrictions, and improved the endothelium-dependent relaxation and vascular remodeling in SHR. The improved effect of silencing salusin-ß on ACh-induced relaxation in SHR was almost blocked by the nitric oxide synthase (NOS) inhibitor L-NAME. Compared to WKY, the endothelial NOS (eNOS) activity and level, and nitric oxide (NO) level were decreased, while NAD(P)H oxidase activity and reactive oxygen species (ROS) levels in MA, CA, and PA of SHR were increased, which were all redressed by salusin-ß knockdown. CONCLUSION: These results indicate that knockdown of salusin-ß improves endothelium-dependent vascular relaxation and vascular remodeling and decreases ABP and vasoconstriction in SHR, which might be accomplished by increasing eNOS activation and NO release while inhibiting NAD(P)H oxidase derived-ROS generation. Scavenging salusin-ß improves vascular function and then prevents the development and progression of vasculopathy of hypertension.

9.
Oncol Lett ; 21(4): 248, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33664812

RESUMO

Colorectal carcinoma (CRC) is one of the most common malignant tumors. The present study aimed to investigate a non-invasive molecular marker that can evaluate the diagnosis and potential molecular mechanism of CRC. Microarray assays and reverse transcription-quantitative PCR analysis demonstrated that microRNA (miR)-325-3p expression was significantly increased in both tissues and serum samples of patients with CRC. In addition, miR-325-3p expression in the tissues and serum was significantly associated with differentiation, TNM stage and lymph node metastasis. The results of the dual-luciferase reporter assay and western blot analysis revealed that cytokeratin 18 (CK18) is a target gene of miR-325-3p. Furthermore, treatment with transforming growth factor (TGF)-ß increased miR-325-3p expression in a time-dependent manner. Conversely, TGF-ß decreased CK18 expression at 48 and 72 h. Western blot analysis demonstrated that TGF-ß1 significantly decreased the expression of the epithelial marker, CK18, and increased the expression of the mesenchymal markers, α-SMA and vimentin. Notably, these effects were reversed following inhibition of miR-325-3p expression. Taken together, the results of the present study suggest that miR-325-3p is a key regulator of TGF-ß-induced CK18 downregulation. Thus, elevated levels of miR-325-3p is an important factor affecting epithelial-to-mesenchymal transition, and is likely to be a molecular marker in the progression of CRC and act as a potential therapeutic target.

10.
Nat Commun ; 12(1): 98, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397935

RESUMO

Glucose metabolism and innate immunity evolved side-by-side. It is unclear if and how the two systems interact with each other during hepatitis B virus (HBV) infections and, if so, which mechanisms are involved. Here, we report that HBV activates glycolysis to impede retinoic acid-inducible gene I (RIG-I)-induced interferon production. We demonstrate that HBV sequesters MAVS from RIG-I by forming a ternary complex including hexokinase (HK). Using a series of pharmacological and genetic approaches, we provide in vitro and in vivo evidence indicating that HBV suppresses RLR signaling via lactate dehydrogenase-A-dependent lactate production. Lactate directly binds MAVS preventing its aggregation and mitochondrial localization during HBV infection. Therefore, we show that HK2 and glycolysis-derived lactate have important functions in the immune escape of HBV and that energy metabolism regulates innate immunity during HBV infection.


Assuntos
Vírus da Hepatite B/fisiologia , Imunidade Inata , Metaboloma , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Anaerobiose , Animais , Células Cultivadas , Proteína DEAD-box 58/metabolismo , Glucose/metabolismo , Glicólise , Células Hep G2 , Hepatócitos/metabolismo , Hepatócitos/patologia , Hepatócitos/virologia , Humanos , Evasão da Resposta Imune , Interferons/metabolismo , Ácido Láctico/metabolismo , Camundongos Endogâmicos C57BL , Modelos Biológicos , Transdução de Sinais , Vírion/metabolismo
11.
Neurosci Bull ; 36(5): 463-474, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31989424

RESUMO

Chemical stimulation of the kidney increases sympathetic activity and blood pressure in rats. The hypothalamic paraventricular nucleus (PVN) is important in mediating the excitatory renal reflex (ERR). In this study, we examined the role of molecular signaling in the PVN in mediating the capsaicin-induced ERR and sympathetic activation. Bilateral PVN microinjections were performed in rats under anesthesia. The ERR was elicited by infusion of capsaicin into the cortico-medullary border of the right kidney. The reflex was evaluated as the capsaicin-induced changes in left renal sympathetic nerve activity and mean arterial pressure. Blockade of angiotensin type 1 receptors with losartan or inhibition of angiotensin-converting enzyme with captopril in the PVN abolished the capsaicin-induced ERR. Renal infusion of capsaicin significantly increased NAD(P)H oxidase activity and superoxide anion production in the PVN, which were prevented by ipsilateral renal denervation or microinjection of losartan into the PVN. Furthermore, either scavenging of superoxide anions or inhibition of NAD(P)H oxidase in the PVN abolished the capsaicin-induced ERR. We conclude that the ERR induced by renal infusion of capsaicin is mediated by angiotensin type 1 receptor-related NAD(P)H oxidase activation and superoxide anion production within the PVN.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Capsaicina/farmacologia , Rim/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Reflexo/efeitos dos fármacos , Superóxidos/metabolismo , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Acetofenonas/farmacologia , Acetilcisteína/farmacologia , Alopurinol/farmacologia , Angiotensina II/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Pressão Sanguínea/fisiologia , Captopril/farmacologia , Ditiocarb/farmacologia , Rim/inervação , Rim/fisiologia , Losartan/farmacologia , Masculino , NADPH Oxidases/antagonistas & inibidores , Oniocompostos/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor Tipo 1 de Angiotensina , Reflexo/fisiologia
12.
Hepatology ; 72(2): 518-534, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31758709

RESUMO

BACKGROUND AND AIMS: Major vault protein (MVP) is up-regulated during infections with hepatitis B virus (HBV) and hepatitis C virus (HCV). Here, we found that MVP deficiency inhibited hepatocellular carcinoma (HCC) development induced by diethylnitrosamine, hepatitis B X protein, and HCV core. APPROACH AND RESULTS: Forced MVP expression was sufficient to induce HCC in mice. Mechanistic studies demonstrate that the ubiquitin ligase human double minute 2 (HDM2) forms mutual exclusive complexes either with interferon regulatory factor 2 (IRF2) or with p53. In the presence of MVP, HDM2 is liberated from IRF2, leading to the ubiquitination of the tumor suppressor p53. Mouse xenograft models showed that HBV and HCV promote carcinogenesis through MVP induction, resulting in a loss of p53 mediated by HDM2. Analyses of clinical samples from chronic hepatitis B, liver cirrhosis, and HCC revealed that MVP up-regulation correlates with several hallmarks of malignancy and associates with poor overall survival. CONCLUSIONS: Taken together, through the sequestration of IRF2, MVP promotes an HDM2-dependent loss of p53 that promotes HCC development.


Assuntos
Carcinoma Hepatocelular/etiologia , Fator Regulador 2 de Interferon/fisiologia , Neoplasias Hepáticas/etiologia , Proteína Supressora de Tumor p53/fisiologia , Partículas de Ribonucleoproteínas em Forma de Abóbada/fisiologia , Animais , Humanos , Camundongos
13.
Neurosci Bull ; 36(2): 143-152, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31392556

RESUMO

Sympathetic activation and the kidney play critical roles in hypertension and chronic heart failure. The role of the kidney in sympathetic activation is still not well known. In this study, we revealed an excitatory renal reflex (ERR) in rats induced by chemical stimulation of the kidney that regulated sympathetic activity and blood pressure. The ERR was induced by renal infusion of capsaicin, and evaluated by the changes in renal sympathetic outflow, blood pressure, and heart rate. Renal infusion of capsaicin dose-dependently increased the contralateral renal sympathetic nerve activity, mean arterial pressure, and heart rate. Capsaicin in the cortico-medullary border had greater effects than in the cortex or medulla. Intravenous infusion of capsaicin had no significant effects. The effects of renal infusion of capsaicin were abolished by ipsilateral renal denervation, but were not affected by bilateral sinoaortic denervation. Renal infusion of capsaicin increased the ipsilateral renal afferent activity. The ERR was also induced by renal infusion of bradykinin, adenosine, and angiotensin II, but not by ATP. Renal infusion of capsaicin increased c-Fos expression in the paraventricular nucleus (PVN) of hypothalamus. Lesion of neurons in the PVN with kainic acid abolished the capsaicin-induced ERR. These findings indicate that chemical stimulation of kidney causes an excitatory reflex, leading to sympathetic activation, pressor response, and accelerated heart rate. The PVN is an important central nucleus in the pathway of the ERR.


Assuntos
Pressão Sanguínea/fisiologia , Hipertensão/fisiopatologia , Rim/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Sistema Nervoso Simpático/efeitos dos fármacos , Angiotensina II , Animais , Pressão Arterial/efeitos dos fármacos , Bradicinina , Capsaicina/farmacologia , Frequência Cardíaca/fisiologia , Masculino , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Reflexo , Estimulação Química
14.
J Nutr Biochem ; 72: 108212, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31473513

RESUMO

Migration of vascular smooth muscle cell (VSMC) plays a critical role in the pathophysiology of hypertension and several other vascular diseases. Curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione), a bioactive constituent from Curcuma longa, is commonly used as a spice, food additive or dietary pigment. It has several health benefits including antioxidant, anti-inflammatory and anticancer properties. This study examined the roles of curcumin in VSMC migration in hypertension and underlying mechanism. VSMC was isolated and prepared from thoracic aorta of Wistar-Kyoto rats and spontaneously hypertensive rats (SHR). VSMC migration was evaluated with Boyden chamber assay and wound-healing assay. Curcumin attenuated VSMC migration, inhibited nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) expression and reduced interleukin (IL)-1ß concentration in VSMC of SHR, which were similar to the effects of NLRP3 knockdown on IL-1ß concentration and VSMC migration. Curcumin inhibited NFκB activation in VSMC of SHR, which was similar to the effects of NFκB inhibitor BAY11-7082 on NFκB activation. In another in vitro model of rat VSMC migration, curcumin also inhibited angiotensin II-induced VSMC migration, NFκB activation, NLRP3 expression and IL-1ß production. Intragastric administration of curcumin in SHR attenuated hypertension and reduced NFκB activation, NLRP3 and matrix metalloproteinase-9 expressions and aortic media thickness. These results indicate that curcumin inhibits VSMC migration via inhibiting NFκB-mediated NLRP3 expression in VSMC of SHR or in angiotensin II-treated VSMC. Curcumin attenuates hypertension, vascular inflammation and vascular remodeling in SHR.


Assuntos
Curcumina/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Angiotensina II/farmacologia , Animais , Aorta/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Células Cultivadas , Curcumina/administração & dosagem , Relação Dose-Resposta a Droga , Frequência Cardíaca/efeitos dos fármacos , Hipertensão/tratamento farmacológico , Hipertensão/patologia , Masculino , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , NF-kappa B/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Ratos Endogâmicos SHR , Ratos Wistar
15.
Cell Death Dis ; 10(6): 386, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31097691

RESUMO

Activation of transient receptor potential vanilloid 4 (TRPV4) induces neuronal injury. TRPV4 activation enhances inflammatory response and promotes the proinflammatory cytokine release in various types of tissue and cells. Hyperneuroinflammation contributes to neuronal damage in epilepsy. Herein, we examined the contribution of neuroinflammation to TRPV4-induced neurotoxicity and its involvement in the inflammation and neuronal damage in pilocarpine model of temporal lobe epilepsy in mice. Icv. injection of TRPV4 agonist GSK1016790A (GSK1016790A-injected mice) increased ionized calcium binding adapter molecule-1 (Iba-1) and glial fibrillary acidic protein (GFAP) protein levels and Iba-1-positive (Iba-1+) and GFAP-positive (GFAP+) cells in hippocampi, which indicated TRPV4-induced microglial cell and astrocyte activation. The protein levels of nucleotide-binding oligomerization domain-like receptor pyrin domain containing 3 (NLRP3) inflammasome components NLRP3, apoptosis-related spotted protein (ASC) and cysteinyl aspartate-specific protease-1 (caspase-1) were increased in GSK1016790A-injected mice, which indicated NLRP3 inflammasome activation. GSK1016790A also increased proinflammatory cytokine IL-1ß, TNF-α and IL-6 protein levels, which were blocked by caspase-1 inhibitor Ac-YVAD-cmk. GSK1016790A-induced neuronal death was attenuated by Ac-YVAD-cmk. Icv. injection of TRPV4-specific antagonist HC-067047 markedly increased the number of surviving cells 3 d post status epilepticus in pilocarpine model of temporal lobe epilepsy in mice (pilocarpine-induced status epilepticus, PISE). HC-067047 also markedly blocked the increase in Iba-1 and GFAP protein levels, as well as Iba-1+ and GFAP+ cells 3 d post-PISE. Finally, the increased protein levels of NLRP3, ASC and caspase-1 as well as IL-1ß, TNF-α and IL-6 were markedly blocked by HC-067047. We conclude that TRPV4-induced neuronal death is mediated at least partially by enhancing the neuroinflammatory response, and this action is involved in neuronal injury following status epilepticus.


Assuntos
Epilepsia do Lobo Temporal/patologia , Neurônios/patologia , Estado Epiléptico/patologia , Canais de Cátion TRPV/fisiologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Epilepsia do Lobo Temporal/induzido quimicamente , Inflamassomos/efeitos dos fármacos , Inflamação , Leucina/análogos & derivados , Leucina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Microglia/efeitos dos fármacos , Microglia/patologia , Morfolinas/farmacologia , Pilocarpina , Pirróis/farmacologia , Estado Epiléptico/induzido quimicamente , Sulfonamidas/farmacologia , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/antagonistas & inibidores
16.
Oxid Med Cell Longev ; 2019: 5018410, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30805081

RESUMO

Proliferation and oxidative stress of vascular smooth muscle cells (VSMCs) contribute to vascular remodeling in hypertension and several major vascular diseases. B-cell lymphoma 6 (BCL6) functions as a transcriptional repressor. The present study is designed to determine the roles of BCL6 in VSMC proliferation and oxidative stress and underlying mechanism. Angiotensin (Ang) II was used to induce VSMC proliferation and oxidative stress in human VSMCs. Effects of BCL6 overexpression and knockdown were, respectively, investigated in Ang II-treated human VSMCs. Therapeutical effects of BCL6 overexpression on vascular remodeling, oxidative stress, and proliferation were determined in the aorta of spontaneously hypertensive rats (SHR). Ang II reduced BCL6 expression in human VSMCs. BCL6 overexpression attenuated while BCL6 knockdown enhanced the Ang II-induced upregulation of NADPH oxidase 4 (NOX4), production of reactive oxygen species (ROS), and proliferation of VSMCs. BCL6 expression was downregulated in SHR. BCL6 overexpression in SHR reduced NOX4 expression, ROS production, and proliferation of the aortic media of SHR. Moreover, BCL6 overexpression attenuated vascular remodeling and hypertension in SHR. However, BCL6 overexpression had no significant effects on NOX2 expression in human VSMCs or in SHR. We conclude that BCL6 attenuates proliferation and oxidative stress of VSMCs in hypertension.


Assuntos
Hipertensão/metabolismo , Hipertensão/patologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Angiotensina II/farmacologia , Animais , Aorta/efeitos dos fármacos , Aorta/patologia , Aorta/fisiopatologia , Pressão Sanguínea/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Hipertensão/fisiopatologia , Masculino , Miócitos de Músculo Liso/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Remodelação Vascular/efeitos dos fármacos
17.
J Biol Chem ; 294(13): 4815-4827, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30659097

RESUMO

Hepatitis B virus X protein (HBx) critically contributes to the development of hepatocellular carcinoma (HCC). However, the mechanisms by which HBx promotes HCC remain unclear. In the present study, using a combination of gene expression profiling and immunohistochemistry, we found higher levels of SH2 domain-containing 5 (SH2D5) in liver tissue from HBV-associated HCC (HBV-HCC) patients than in adjacent nontumor tissues. Moreover, HBV infection elevated SH2D5 levels, and we observed that HBx plays an important role in SH2D5 induction. We also found that HBx triggers SH2D5 expression through the NF-κB and c-Jun kinase pathways. Employing SH2D5 overexpression or knockdown, we further demonstrate that SH2D5 promotes HCC cell proliferation both in vitro and in vivo While investigating the mechanism of SH2D5-mediated stimulation of HCC cell proliferation, we noted that HBV induces SH2D5 binding to transketolase (TKT), a pentose phosphate pathway enzyme, thereby promoting an interaction between and signal transducer and activator of transcription 3 (STAT3). Furthermore, HBx stimulated STAT3 phosphorylation at Tyr-705 and promoted the activity and downstream signaling pathway of STAT3 via the SH2D5-TKT interaction. Taken together, our results suggest that SH2D5 is an HBV-induced protein capable of binding to TKT, leading to induction of HCC cell proliferation.


Assuntos
Carcinoma Hepatocelular/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Vírus da Hepatite B/metabolismo , Hepatite B/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas Adaptadoras da Sinalização Shc/metabolismo , Transativadores/metabolismo , Transcetolase/biossíntese , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Células Hep G2 , Hepatite B/genética , Hepatite B/patologia , Vírus da Hepatite B/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Proteínas Adaptadoras da Sinalização Shc/genética , Transativadores/genética , Transcetolase/genética , Proteínas Virais Reguladoras e Acessórias
18.
Mol Med Rep ; 18(6): 4831-4838, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30272338

RESUMO

Numerous microRNAs (miRNA/miRs) have been reported to be associated with the initiation and progression of non­small cell lung cancer (NSCLC). The aim of the present study was to examine the expression and biological role of miR­939 in human NSCLC, in vitro. Reverse transcription­quantitative polymerase chain reaction analysis was used to evaluate the expression of miR­939 in NSCLC tissues. Cell Counting Kit­8, 5­ethynyl­29­deoxyuridine and Transwell assays were also used to determine the effects of miR­939 on tumor cell proliferation and invasion in two human NSCLC cell lines (H1299 and SPCA1). Furthermore, tissue inhibitor of metalloproteinases 2 (TIMP2) was confirmed to be a target of miR­939 by luciferase reporter assay, western blotting and bioinformatics analysis. Following downregulation of miR­939 expression, cell proliferative and invasive abilities were significantly suppressed. Collectively, these findings indicated that the knockdown of miR­939 may inhibit cell proliferation and invasion by regulating the expression of TIMP2 in NSCLC cells. Thus, miR­939 may be a potential target in the treatment of NSCLC, although this requires further investigation.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , MicroRNAs/genética , Inibidor Tecidual de Metaloproteinase-2/genética , Regiões 3' não Traduzidas , Adulto , Idoso , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Humanos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Estadiamento de Neoplasias , Interferência de RNA , Carga Tumoral
19.
Neuroscience ; 329: 112-21, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27163380

RESUMO

Activation of angiotensinergic pathways by central aldosterone (Aldo)-mineralocorticoid receptor (MR) pathway plays a critical role in angiotensin II (Ang II)-induced hypertension. The subfornical organ (SFO) contains both MR and angiotensin II type 1 receptors (AT1R) and can relay the signals of circulating Ang II to downstream nuclei such as the paraventricular nucleus (PVN), supraoptic nucleus (SON) and rostral ventrolateral medulla (RVLM). In Wistar rats, subcutaneous (sc) infusion of Ang II at 500ng/min/kg for 1 or 2weeks increased reactive oxygen species (ROS) as measured by dihydroethidium (DHE) staining in a nucleus - specific pattern. Intra-SFO infusion of AAV-MR- or AT1aR-siRNA prevented the Ang II-induced increase in AT1R mRNA expression in the SFO and decreased MR mRNA. Both MR- and AT1aR-siRNA prevented increases in ROS in the PVN and RVLM. MR- but not AT1aR-siRNA in the SFO prevented the Ang II-induced ROS in the SON. Both MR- and AT1aR-siRNA in the SFO prevented most of the Ang II-induced hypertension as assessed by telemetry. These results indicate that Aldo-MR signaling in the SFO is needed for the activation of Ang II-AT1R-ROS signaling from the SFO to the PVN and RVLM. Activation of Aldo-MR signaling from the SFO to the SON may enhance AT1R dependent activation of pre-sympathetic neurons in the PVN.


Assuntos
Angiotensina II/metabolismo , Hipotálamo/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Receptores de Mineralocorticoides/metabolismo , Órgão Subfornical/metabolismo , Aldosterona/metabolismo , Angiotensina II/administração & dosagem , Animais , Pressão Sanguínea/fisiologia , Dependovirus , Técnicas de Silenciamento de Genes , Vetores Genéticos , Frequência Cardíaca/fisiologia , Hipertensão/metabolismo , Masculino , Bulbo/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno , Distribuição Aleatória , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Receptor Tipo 1 de Angiotensina/genética , Receptores de Mineralocorticoides/genética
20.
Oncol Lett ; 12(6): 5211-5216, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28101239

RESUMO

Colorectal cancer is the most common gastrointestinal cancer in the USA. Naphthazarin, one of the naturally available 1,4-naphthoquinone derivatives, is a natural bioactive molecule that exhibits an antitumor effect. To the best of our knowledge, this is the first study to investigate the anticancer effect of naphthazarin on cell proliferation and apoptosis in human SW480 colorectal cancer cells. In the present study, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assays were performed to assess the effect of napthazarin on cell proliferation and cytotoxicity of SW430 cells, respectively. In addition, an Annexin V-fluorescein isothiocyanate/propidium iodide apoptosis assay and 4',6-diamidino-2-phenylindole staining were used to analyze cell and nuclei apoptosis of SW480 cells, respectively, following treatment with naphthazarin. Poly (ADP-ribose) polymerase (PARP), B-cell lymphoma 2 (Bcl-2) and B-cell associated X protein (Bax) protein expression was analyzed by western blot. Furthermore, caspase-3 activation was analyzed using a commercial kit. The results revealed that naphthazarin exhibited cell growth inhibition, an increase in cytotoxicity and apoptosis induction in SW480 cells, which was associated with activation of the Bax/Bcl-2 signaling pathway and cleaved caspase-3 activation. However, no significant differences in PARP expression were identified following treatment with naphthazarin in SW480 cells. Taken together, these results suggest that naphthazarin decreased cell viability and induced apoptosis of SW480 cells, indicating that naphthazarin may present a potential therapeutic agent for human colorectal cancer treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA