Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 132, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36599852

RESUMO

Naringenin is a citrus flavonoid with various biological functions and a potential therapeutic agent for skin diseases, such as UV radiation and atopic dermatitis. The present study investigates the therapeutic effect and pharmacological mechanism of naringenin on chronic wounds. Using network pharmacology, we identified 163 potential targets and 12 key targets of naringenin. Oxidative stress was confirmed to be the main biological process modulated by naringenin. The transcription factor p65 (RELA), alpha serine/threonine-protein kinase (AKT1), mitogen-activated protein kinase 1 (MAPK1) and mitogen-activated protein kinase 3 (MAPK3) were identified as common targets of multiple pathways involved in treating chronic wounds. Molecular docking verified that these four targets stably bound naringenin. Naringenin promoted wound healing in mice in vivo by inhibiting wound inflammation. Furthermore, in vitro experiments showed that a low naringenin concentration did not significantly affect normal skin cell viability and cell apoptosis; a high naringenin concentration was cytotoxic and reduced cell survival by promoting apoptosis. Meanwhile, comprehensive network pharmacology, molecular docking and in vivo and in vitro experiments revealed that naringenin could treat chronic wounds by alleviating oxidative stress and reducing the inflammatory response. The underlying mechanism of naringenin in chronic wound therapy involved modulating the RELA, AKT1 and MAPK1/3 signalling pathways to inhibit ROS production and inflammatory cytokine expression.


Assuntos
Flavanonas , Farmacologia em Rede , Cicatrização , Animais , Camundongos , Flavanonas/farmacologia , Flavanonas/uso terapêutico , Simulação de Acoplamento Molecular , Farmacologia em Rede/métodos , Estresse Oxidativo/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
2.
Front Surg ; 9: 966375, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36303853

RESUMO

Background: Skin innervation plays an important role in wound healing by either direct contact with or indirect secretions that impact skin cells. Many studies in this field have been published; however, there is a lack of bibliometric analyses focusing on the effect of skin innervation on skin wound healing. In this study, we aimed to analyse the research trends, status, and hotspots in this field. Methods: Reviews and articles published in English were extracted from the Web of Science Core Collection (WoSCC) database based on subject term searches. Microsoft Office Excel, VOSviewer, and CiteSpace were used to analyse publication date, country or region, institution, author, and author keywords. Results: A total of 368 papers published between 1959 and 2022 were included in the analysis. Although there was a pulsation during this period, there was an overall upward trend in studies related to the effect of skin innervation on wound healing. The United States, particularly the University of Washington, and Gibran, Nicole S. from the University of Washington, was the most active in this field. Wound Repair and Regeneration published the most relevant literature, and "Calcitonin gene-related peptide: physiology and pathophysiology" had the highest total number of citations. "Diabetic foot ulcer," "epidermal stem cells," "mesenchymal stem cells," and "mast cells" are current and potential future research hotspots. Conclusion: This bibliometric analysis will inform the overall trends in research related to the effect of skin innervation on wound healing, summarise relevant research hotspots, and guide future work.

3.
In Vitro Cell Dev Biol Anim ; 58(7): 549-557, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36036847

RESUMO

Epidermal stem cells (ESCs) are critical for skin regeneration and repair. Previous studies have shown that ESCs are susceptible to oxidative stress, which in turn leads to lipid peroxidation and affects skin repair. Our study aims to explore how ESCs resist lipid peroxidation. By performing proteomics analysis, we found that the expression of Acyl-CoA thioesterase 7 (ACOT7) was positively correlated with the concentration of transferrin. Overexpression adenovirus vectors of ACOT7 were constructed and transfected into ESCs. Levels of lipid peroxidation by flow cytometry, cell viabilities, and MDA levels were measured. The results revealed that ACOT7 could inhibit lipid peroxidation, reduce the level of malondialdehyde (MDA), and improve the survival rate of ESCs induced by H2O2, Erastin, and RSL3. Our data suggest that ACOT7 has an effect on protecting ESCs against iron-dependent lipid peroxidation.


Assuntos
Peróxido de Hidrogênio , Palmitoil-CoA Hidrolase , Animais , Coenzima A/metabolismo , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/toxicidade , Ferro , Peroxidação de Lipídeos , Malondialdeído , Palmitoil-CoA Hidrolase/metabolismo , Células-Tronco/metabolismo , Transferrinas/metabolismo
4.
Cell Commun Signal ; 20(1): 52, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35413847

RESUMO

BACKGROUND: Skin innervation is crucial for normal wound healing. However, the relationship between nerve receptors and wound healing and the intrinsic mechanism remains to be further identified. In this study, we investigated the role of a calcitonin gene-related peptide (CGRP) receptor component, receptor activity-modifying protein 1 (RAMP1), in mouse skin fibroblast (MSF) proliferation. METHODS: In vivo, Western blotting and immunohistochemical (IHC) staining of mouse skin wounds tissue was used to detect changes in RAMP1 expression. In vitro, RAMP1 was overexpressed in MSF cell lines by infection with Tet-On-Flag-RAMP1 lentivirus and doxycycline (DOX) induction. An IncuCyte S3 Live-Cell Analysis System was used to assess and compare the proliferation rate differences between different treatment groups. Total protein and subcellular extraction Western blot analysis, quantitative real-time-polymerase chain reaction (qPCR) analysis, and immunofluorescence (IF) staining analysis were conducted to detect signalling molecule expression and/or distribution. The CUT & RUN assay and dual-luciferase reporter assay were applied to measure protein-DNA interactions. RESULTS: RAMP1 expression levels were altered during skin wound healing in mice. RAMP1 overexpression promoted MSF proliferation. Mechanistically, total Yes-associated protein (YAP) and nuclear YAP protein expression was increased in RAMP1-overexpressing MSFs. RAMP1 overexpression increased inhibitory guanine nucleotide-binding protein (G protein) α subunit 3 (Gαi3) expression and activated downstream protein kinase A (PKA), and both elevated the expression of cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) and activated it, promoting the transcription of YAP, elevating the total YAP level and promoting MSF proliferation. CONCLUSIONS: Based on these data, we report, for the first time, that changes in the total RAMP1 levels during wound healing and RAMP1 overexpression alone can promote MSF proliferation via the Gαi3-PKA-CREB-YAP axis, a finding critical for understanding RAMP1 function, suggesting that this pathway is an attractive and accurate nerve target for skin wound treatment. Video Abstract.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP , Proteína 1 Modificadora da Atividade de Receptores , Transdução de Sinais , Pele , Proteínas de Sinalização YAP , Animais , Proliferação de Células , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Camundongos , Proteína 1 Modificadora da Atividade de Receptores/genética , Proteína 1 Modificadora da Atividade de Receptores/metabolismo , Pele/citologia , Pele/metabolismo , Proteínas de Sinalização YAP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA