Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
2.
Nat Chem Biol ; 16(1): 50-59, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31819276

RESUMO

The post-genomic era has seen many advances in our understanding of cancer pathways, yet resistance and tumor heterogeneity necessitate multiple approaches to target even monogenic tumors. Here, we combine phenotypic screening with chemical genetics to identify pre-messenger RNA endonuclease cleavage and polyadenylation specificity factor 3 (CPSF3) as the target of JTE-607, a small molecule with previously unknown target. We show that CPSF3 represents a synthetic lethal node in a subset of acute myeloid leukemia (AML) and Ewing's sarcoma cancer cell lines. Inhibition of CPSF3 by JTE-607 alters expression of known downstream effectors in AML and Ewing's sarcoma lines, upregulates apoptosis and causes tumor-selective stasis in mouse xenografts. Mechanistically, it prevents the release of newly synthesized pre-mRNAs, resulting in read-through transcription and the formation of DNA-RNA hybrid R-loop structures. This study implicates pre-mRNA processing, and specifically CPSF3, as a druggable target providing an avenue to therapeutic intervention in cancer.


Assuntos
Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Leucemia Mieloide Aguda/metabolismo , Precursores de RNA/metabolismo , Sarcoma de Ewing/metabolismo , Animais , Apoptose/efeitos dos fármacos , Sítios de Ligação , Hidrolases de Éster Carboxílico/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Fator de Especificidade de Clivagem e Poliadenilação/genética , Células HEK293 , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Fenótipo , Fenilalanina/análogos & derivados , Fenilalanina/farmacologia , Piperazinas/farmacologia , Ligação Proteica , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Sarcoma de Ewing/tratamento farmacológico
3.
PLoS Genet ; 8(8): e1002922, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22952453

RESUMO

DNA double-strand breaks (DSBs) represent one of the most deleterious forms of DNA damage to a cell. In cancer therapy, induction of cell death by DNA DSBs by ionizing radiation (IR) and certain chemotherapies is thought to mediate the successful elimination of cancer cells. However, cancer cells often evolve to evade the cytotoxicity induced by DNA DSBs, thereby forming the basis for treatment resistance. As such, a better understanding of the DSB DNA damage response (DSB-DDR) pathway will facilitate the design of more effective strategies to overcome chemo- and radioresistance. To identify novel mechanisms that protect cells from the cytotoxic effects of DNA DSBs, we performed a forward genetic screen in zebrafish for recessive mutations that enhance the IR-induced apoptotic response. Here, we describe radiosensitizing mutation 7 (rs7), which causes a severe sensitivity of zebrafish embryonic neurons to IR-induced apoptosis and is required for the proper development of the central nervous system. The rs7 mutation disrupts the coding sequence of ccdc94, a highly conserved gene that has no previous links to the DSB-DDR pathway. We demonstrate that Ccdc94 is a functional member of the Prp19 complex and that genetic knockdown of core members of this complex causes increased sensitivity to IR-induced apoptosis. We further show that Ccdc94 and the Prp19 complex protect cells from IR-induced apoptosis by repressing the expression of p53 mRNA. In summary, we have identified a new gene regulating a dosage-sensitive response to DNA DSBs during embryonic development. Future studies in human cancer cells will determine whether pharmacological inactivation of CCDC94 reduces the threshold of the cancer cell apoptotic response.


Assuntos
Quebras de DNA de Cadeia Dupla/efeitos da radiação , Tolerância a Radiação/genética , Proteína Supressora de Tumor p53/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra , Animais , Apoptose/efeitos da radiação , Desenvolvimento Embrionário/efeitos da radiação , Regulação da Expressão Gênica , Genes Recessivos , Mutação , Neurônios/efeitos da radiação , Radiação Ionizante , Proteína Supressora de Tumor p53/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
4.
Blood ; 117(15): 3996-4007, 2011 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-21330472

RESUMO

A comprehensive understanding of the genes and pathways regulating hematopoiesis is needed to identify genes causally related to bone marrow failure syndromes, myelodysplastic syndromes, and hematopoietic neoplasms. To identify novel genes involved in hematopoiesis, we performed an ethyl-nitrosourea mutagenesis screen in zebrafish (Danio rerio) to search for mutants with defective definitive hematopoiesis. We report the recovery and analysis of the grechetto mutant, which harbors an inactivating mutation in cleavage and polyadenylation specificity factor 1 (cpsf1), a gene ubiquitously expressed and required for 3' untranslated region processing of a subset of pre-mRNAs. grechetto mutants undergo normal primitive hematopoiesis and specify appropriate numbers of definitive HSCs at 36 hours postfertilization. However, when HSCs migrate to the caudal hematopoietic tissue at 3 days postfertilization, their numbers start decreasing as a result of apoptotic cell death. Consistent with Cpsf1 function, c-myb:EGFP(+) cells in grechetto mutants also show defective polyadenylation of snrnp70, a gene required for HSC development. By 5 days postfertilization, definitive hematopoiesis is compromised and severely decreased blood cell numbers are observed across the myeloid, erythroid, and lymphoid cell lineages. These studies show that cpsf1 is essential for HSC survival and differentiation in caudal hematopoietic tissue.


Assuntos
Fator de Especificidade de Clivagem e Poliadenilação/genética , Hematopoese/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/fisiologia , Animais , Diferenciação Celular/fisiologia , Sobrevivência Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Masculino , Mutagênese/fisiologia , Fenótipo , Peixe-Zebra
5.
Blood ; 117(16): 4234-42, 2011 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-21346254

RESUMO

Evaluating hematopoietic stem cell (HSC) function in vivo requires a long-term transplantation assay. Although zebrafish are a powerful model for discovering the genetics of hematopoiesis, hematopoietic transplantation approaches have been underdeveloped. Here we established a long-term reconstitution assay in adult zebrafish. Primary and secondary recipients showed multilineage engraftment at 3 months after transplantation. Limiting dilution data suggest that at least 1 in 65 000 zebrafish marrow cells contain repopulating activity, consistent with mammalian HSC frequencies. We defined zebrafish haplotypes at the proposed major histocompatibility complex locus on chromosome 19 and tested functional significance through hematopoietic transplantation. Matching donors and recipients dramatically increased engraftment and percentage donor chimerism compared with unmatched fish. These data constitute the first functional test of zebrafish histocompatibility genes, enabling the development of matched hematopoietic transplantations. This lays the foundation for competitive transplantation experiments with mutant zebrafish HSCs and chemicals to test for effects on engraftment, thereby providing a model for human hematopoietic diseases and treatments not previously available.


Assuntos
Transplante de Células-Tronco Hematopoéticas/métodos , Peixe-Zebra/imunologia , Peixe-Zebra/cirurgia , Animais , Quimerismo , Complexo Principal de Histocompatibilidade , Modelos Animais , Condicionamento Pré-Transplante/métodos
6.
Blood ; 115(16): 3296-303, 2010 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-20056790

RESUMO

Self-renewal is a feature of cancer and can be assessed by cell transplantation into immune-compromised or immune-matched animals. However, studies in zebrafish have been severely limited by lack of these reagents. Here, Myc-induced T-cell acute lymphoblastic leukemias (T-ALLs) have been made in syngeneic, clonal zebrafish and can be transplanted into sibling animals without the need for immune suppression. These studies show that self-renewing cells are abundant in T-ALL and comprise 0.1% to 15.9% of the T-ALL mass. Large-scale single-cell transplantation experiments established that T-ALLs can be initiated from a single cell and that leukemias exhibit wide differences in tumor-initiating potential. T-ALLs also can be introduced into clonal-outcrossed animals, and T-ALLs arising in mixed genetic backgrounds can be transplanted into clonal recipients without the need for major histocompatibility complex matching. Finally, high-throughput imaging methods are described that allow large numbers of fluorescent transgenic animals to be imaged simultaneously, facilitating the rapid screening of engrafted animals. Our experiments highlight the large numbers of zebrafish that can be experimentally assessed by cell transplantation and establish new high-throughput methods to functionally interrogate gene pathways involved in cancer self-renewal.


Assuntos
Modelos Animais de Doenças , Transplante de Neoplasias/métodos , Células-Tronco Neoplásicas/patologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Separação Celular , Citometria de Fluxo , Processamento de Imagem Assistida por Computador , Microscopia de Fluorescência , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética
7.
J Cell Biochem ; 108(1): 35-42, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19565566

RESUMO

Within the past two decades, the zebrafish (Danio rerio) has become an excellent model to study the development of hematopoietic stem cells (HSCs). All vertebrates including zebrafish have primitive and definitive waves of hematopoiesis, but self-renewing pluripotent HSCs are only produced by the definitive wave. The primitive wave occurs in two intraembryonic locations called the intermediate cell mass (ICM) and the anterior lateral mesoderm (ALM). Primitive erythropoiesis is in the ICM, whereas myelopoiesis initiates in the ALM. After circulation starts at 24 h post-fertilization, hematopoiesis shifts to the posterior blood island (PBI) for a brief period. The definitive wave starts in the aorta-gonad-mesonephros (AGM). There are three different HSC migration and colonization events that begin 2 days post-fertilization: AGM progenitor cells migrate to (1) the caudal hematopoietic tissue (CHT), which is an intermediate site of blood development; (2) the thymus, which is a site of lymphocyte maturation; and (3) the developing kidney marrow, which is the larval and adult location for production of all hematopoietic cell types, and is comparable to the bone marrow of mammals. Many of the transcription factors and signaling pathways that regulate the formation of HSCs in a zebrafish are conserved with mammals. Large-scale forward and reverse genetic screens have identified zebrafish blood and HSC mutants that represent models for known human diseases. Along with the technological advancements in the field of zebrafish research, future HSC studies in zebrafish will help us illuminate the genetic network controlling the development and function of stem cells in all vertebrates.


Assuntos
Células-Tronco Hematopoéticas/citologia , Peixe-Zebra/embriologia , Animais , Movimento Celular , Embrião não Mamífero/metabolismo , Endotélio/metabolismo , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Mesoderma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA