Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 12: e16982, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38406282

RESUMO

Background: Saccharum spp. is the primary source of sugar and plays a significant role in global renewable bioenergy. Sugarcane bacilliform virus (SCBV) is one of the most important viruses infecting sugarcane, causing severe yield losses and quality degradation. It is of great significance to reveal the pathogenesis of SCBV and resistance breeding. However, little is known about the viral virulence factors or RNA silencing suppressors and the molecular mechanism of pathogenesis. Methods: To systematically investigate the functions of the unknown protein P2 encoded by SCBV ORF2. Phylogenetic analysis was implemented to infer the evolutionary relationship between the P2 of SCBV and other badnaviruses. The precise subcellular localization of P2 was verified in the transient infiltrated Nicotiana benthamiana epidermal mesophyll cells and protoplasts using the Laser scanning confocal microscope (LSCM). The post-transcriptional gene silencing (PTGS) and transcriptional gene silencing (TGS) RNA silencing suppressor activity of P2 was analyzed, respectively. Furthermore, restriction digestion and RT-qPCR assays were conducted to verify the probable mechanism of P2 on repressing DNA methylation. To explore the pathogenicity of P2, a potato virus X-based viral vector was used to heterologously express SCBV P2 and the consequent H2O2 accumulation was detected by the 3,3'-diaminobenzidine (DAB) staining method. Results: Phylogenetic analysis shows that SCBV has no obvious sequence similarity and low genetic relatedness to Badnavirus and Tungrovirus representatives. LSCM studies show that P2 is localized in both the cytoplasm and nucleus. Moreover, P2 is shown to be a suppressor of PTGS and TGS, which can not only repress ssRNA-induced gene silencing but also disrupt the host RNA-directed DNA methylation (RdDM) pathway. In addition, P2 can trigger an oxidative burst and cause typical hypersensitive-like response (HLR) necrosis in systemic leaves of N. benthamiana when expressed by PVX. Overall, our results laid a foundation for deciphering the molecular mechanism of SCBV pathogenesis and made progress for resistance breeding.


Assuntos
Badnavirus , Ácidos Nucleicos , Fatores de Virulência , Filogenia , Peróxido de Hidrogênio , Melhoramento Vegetal
2.
Mol Plant Pathol ; 25(1): e13414, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38279852

RESUMO

Fusarium sacchari is one of the primary pathogens causing pokkah boeng disease, which impairs the yield and quality of sugarcane around the world. Understanding the molecular mechanisms of the F. sacchari effectors that regulate plant immunity is of great importance for the development of novel strategies for the persistent control of pokkah boeng disease. In a previous study, Fs00367 was identified to inhibit BAX-induced cell death. In this study, Fs00367nsp (without signal peptide) was found to suppress BAX-induced cell death, reactive oxygen species bursts and callose accumulation. The amino acid region 113-142 of Fs00367nsp is the functional region. Gene mutagenesis indicated that Fs00367 is important for the full virulence of F. sacchari. A yeast two-hybrid assay revealed an interaction between Fs00367nsp and sugarcane ScPi21 in yeast that was further confirmed using bimolecular fluorescence complementation, pull-down assay and co-immunoprecipitation. ScPi21 can induce plant immunity, but this effect could be blunted by Fs00367nsp. These results suggest that Fs00367 is a core pathogenicity factor that suppresses plant immunity through inhibiting ScPi21-induced cell death. The findings of this study provide new insights into the molecular mechanisms of effectors in regulating plant immunity.


Assuntos
Fusarium , Saccharum , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/farmacologia , Imunidade Vegetal/genética , Saccharum/genética , Saccharum/metabolismo , Morte Celular , Doenças das Plantas
3.
Microbiol Spectr ; 11(3): e0016523, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37140457

RESUMO

Fusarium sacchari is one of the primary pathogens causing Pokkah Boeng disease (PBD) in sugarcane in China. Pectate lyases (PL), which play a critical role in pectin degradation and fungal virulence, have been extensively studied in major bacterial and fungal pathogens of a wide range of plant species. However, only a few PLs have been functionally investigated. In this study, we analyzed the function of the pectate lyase gene, FsPL, from F. sacchari. FsPL is a key virulence factor of F. sacchari and can induce plant cell death. FsPL also triggers the pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) response in Nicotiana benthamiana, as reflected by increases in reactive oxygen species (ROS) production, electrolyte leakage, and callose accumulation, as well as the upregulation of defense response genes. In addition, our study also found that the signal peptide of FsPL was necessary for induced cell death and PTI responses. Virus-induced gene silencing showed that FsPL-induced cell death in Nicotiana benthamiana was mediated by leucine-rich repeat (LRR) receptor-like kinases BAK1 and SOBIR1. Thus, FsPL may not only be a critical virulence factor for F. sacchari but may also induce plant defense responses. These findings provide new insights into the functions of pectate lyase in host-pathogen interactions. IMPORTANCE Pokkah Boeng disease (PBD) is one of the main diseases affecting sugarcane in China, seriously damaging sugarcane production and economic development. Therefore, it is important to clarify the pathogenic mechanisms of this disease and to provide a theoretical basis for the breeding of PBD-resistant sugarcane strains. The present study aimed to analyze the function of FsPL, a recently identified pectate lyase gene from F. sacchari. FsPL is a key virulence factor of F. sacchari that induces plant cell death. Our results provide new insights into the function of pectate lyase in host-pathogen interactions.


Assuntos
Nicotiana , Imunidade Vegetal , Virulência , Fatores de Virulência/genética , Doenças das Plantas/microbiologia
4.
Nat Plants ; 9(4): 554-571, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36997685

RESUMO

A diploid genome in the Saccharum complex facilitates our understanding of evolution in the highly polyploid Saccharum genus. Here we have generated a complete, gap-free genome assembly of Erianthus rufipilus, a diploid species within the Saccharum complex. The complete assembly revealed that centromere satellite homogenization was accompanied by the insertions of Gypsy retrotransposons, which drove centromere diversification. An overall low rate of gene transcription was observed in the palaeo-duplicated chromosome EruChr05 similar to other grasses, which might be regulated by methylation patterns mediated by homologous 24 nt small RNAs, and potentially mediating the functions of many nucleotide-binding site genes. Sequencing data for 211 accessions in the Saccharum complex indicated that Saccharum probably originated in the trans-Himalayan region from a diploid ancestor (x = 10) around 1.9-2.5 million years ago. Our study provides new insights into the origin and evolution of Saccharum and accelerates translational research in cereal genetics and genomics.


Assuntos
Saccharum , Saccharum/genética , Diploide , Genômica , Poaceae/genética , Poliploidia , Genoma de Planta
5.
J Fungi (Basel) ; 8(8)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36012840

RESUMO

Sporisorium scitamineum is a biotrophic fungus responsible for sugarcane smut disease. To investigate the key genes involved in S. scitamineum infection, we conducted RNA sequencing of sugarcane sprouts inoculated with S. scitamineum teliospores. A weighted gene co-expression network analysis (WGCNA) showed that two co-expressed gene modules, MEdarkturquoise and MEpurple-containing 66 and 208 genes, respectively-were associated with S. scitamineum infection. The genes in these two modules were further studied using Gene Ontology (GO) enrichment analysis, pathogen-host interaction (PHI) database BLASTp, and small secreted cysteine-rich proteins (SCRPs) prediction. The top ten hub genes in each module were identified using the Cytohubba plugin. The GO enrichment analysis found that endoplasmic reticulum-related and catabolism-related genes were expressed during S. scitamineum infection. A total of 83 genes had homologs in the PHI database, 62 of which correlated with pathogen virulence. A total of 21 proteins had the characteristics of small secreted cysteine-rich proteins (SCRPs), a common source of fungal effectors. The top ten hub genes in each module were identified, and seven were annotated as Mig1-Mig1 protein, glycosyl hydrolase, beta-N-acetylglucosaminidase, secreted chorismate mutase, collagen, mRNA export factor, and pleckstrin homology domain protein, while the remaining three were unknown. Two SCRPs-SPSC_06609 and SPSC_04676-and three proteins-SPSC_01958, SPSC_02155, and SPSC_00940-identified in the PHI database were also among the top ten hub genes in the MEdarkturquoise and MEpurple modules, suggesting that they may play important roles in S. scitamineum infection. A S. scitamineum infection model was postulated based on current findings. These findings help to deepen the current understanding of early events in S. scitamineum infection.

6.
Nat Genet ; 54(6): 885-896, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35654976

RESUMO

Saccharum spontaneum is a founding Saccharum species and exhibits wide variation in ploidy levels. We have assembled a high-quality autopolyploid genome of S. spontaneum Np-X (2n = 4x = 40) into 40 pseudochromosomes across 10 homologous groups, that better elucidates recent chromosome reduction and polyploidization that occurred circa 1.5 million years ago (Mya). One paleo-duplicated chromosomal pair in Saccharum, NpChr5 and NpChr8, underwent fission followed by fusion accompanied by centromeric split around 0.80 Mya. We inferred that Np-X, with x = 10, most likely represents the ancestral karyotype, from which x = 9 and x = 8 evolved. Resequencing of 102 S. spontaneum accessions revealed that S. spontaneum originated in northern India from an x = 10 ancestor, which then radiated into four major groups across the Indian subcontinent, China, and Southeast Asia. Our study suggests new directions for accelerating sugarcane improvement and expands our knowledge of the evolution of autopolyploids.


Assuntos
Saccharum , Cromossomos , Genoma de Planta/genética , Genômica , Ploidias , Saccharum/genética
7.
Int J Mol Sci ; 23(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35628151

RESUMO

Dirigent proteins (DIRs) are known to function in lignin biogenesis and to be involved in stress resistance in plants. However, the sugarcane DIRs have not been functionally characterized. In this study, we investigated the DIR-protein-encoding genes in Saccharum spp. (ScDIR) by screening collections of sugarcane databases, monitoring the responses of these genes to drought stress by real-time quantitative PCR, and identifying their heterologous expression in tobacco. Of the 64 ScDIRs identified, four belonging to the DIR-b/d (ScDIR5 and ScDIR11) and DIR-c (ScDIR7 and ScDIR40) subfamilies showed a significant transcriptional response when subjected to drought stress. ScDIR5, ScDIR7, and ScDIR11 are localized in the cell membrane, whereas ScDIR40 is found in the cell wall. The overexpression of these ScDIR genes in tobacco generally increased the drought tolerance of the transgenic lines, with ScDIR7 conferring the highest degree of drought tolerance. The characterization of the physiological and biochemical indicators (superoxide dismutase, catalase, malondialdehyde, and H2O2) confirmed that the ScDIR-overexpressing lines outperformed the wild type. These results demonstrated that specific ScDIRs in sugarcane respond and contribute to tolerance of drought stress, shedding light on potential means of improving drought tolerance in this crop.


Assuntos
Nicotiana , Saccharum , Secas , Grão Comestível/genética , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Saccharum/metabolismo , Nicotiana/metabolismo
8.
J Fungi (Basel) ; 8(1)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35049998

RESUMO

One of the causative agents of pokkah boeng disease (PBD), which affects sugarcane crops globally, is the fungus Fusarium sacchari. These fungal infections reduce sugar quality and yield, resulting in severe economic losses. Effector proteins play important roles in the interactions between pathogenic fungi and plants. Here, we used bioinformatic prediction approaches to identify 316 candidate secreted effector proteins (CSEPs) in the complete genome of F. sacchari. In total, 95 CSEPs contained known conserved structures, representing 40 superfamilies and 18 domains, while an additional 91 CSEPs contained seven known motifs. Of the 130 CSEPs containing no known domains or motifs, 14 contained one of four novel motifs. A heterogeneous expression system in Nicotiana benthamiana was used to investigate the functions of 163 CSEPs. Seven CSEPs suppressed BAX-triggered programmed cell death in N. benthamiana, while four caused cell death in N. benthamiana. The expression profiles of these eleven CSEPs during F. sacchari infection suggested that they may be involved in sugarcane-F. sacchari interaction. Our results establish a basis for further studies of the role of effector molecules in pathogen-sugarcane interactions, and provide a framework for future predictions of pathogen effector molecules.

9.
Phytopathology ; 112(2): 299-307, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34033505

RESUMO

Autophagy is an evolutionarily ancient process wherein cells are able to break down intracellular contents to support normal physiology and development. Autophagosome formation is regulated by several different proteins, including the key cysteine protease Atg4. The contribution of Atg4 protein in the pathogenic fungus Cryphonectria parasitica, which causes blight in chestnut plants, has not been completely understood. In this context, we aimed to investigate the role of Atg4 during autophagy formation and their contribution to nonautophagic events in C. parasitica. By complementation assay, we determined that the CpAtg4 gene from C. parasitica was able to functionally complement the deletion of yeast Atg4. Using a yeast two-hybrid assay system, we confirmed that CpAtg4 and CpAtg8 directly interact with one another, and amino acids 377 to 409 of CpAtg4 were identified as being responsible for its binding with CpAtg8. The deletion mutant of CpAtg4 did not demonstrate positive monodansylcadaverine staining, which indicated that CpAtg4 is required for autophagy in C. parasitica. Moreover, the ΔCpAtg4 strain exhibited a decrease in aerial hyphae formation and sporulation, and reduction in virulence on apple and chestnut stem. The ΔCpAtg4 strains were also more sensitive to H2O2 and Congo red-induced stress. We further determined that amino acids 377 to 409 of CpAtg4 were essential for the function of CpAtg4 in vivo. Together, our findings indicated that CpAtg4 is required for the autophagy formation, fungal phenotypic traits, stress tolerance, and virulence in C. parasitica.


Assuntos
Ascomicetos , Peróxido de Hidrogênio , Ascomicetos/genética , Autofagia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Peróxido de Hidrogênio/metabolismo , Doenças das Plantas/microbiologia , Virulência/genética
10.
Sci Total Environ ; 759: 143531, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33243497

RESUMO

The complexity of dissolved organic matter (DOM) limits our understanding of the estuarine carbon cycle. This study adopted a combination of bulk carbon isotope, optical techniques and ultra-high resolution mass spectrometry to study the spatial heterogeneity and compositional variations of DOM across a latitudinal transect of the Yangtze River Estuary (YRE). Results show that the whole section of YRE received high abundance of protein-like C4 fluorescent component (0.66 ± 0.08 R.U.) and high relative abundance of aliphatic compounds and peptides (8.28 ± 1.46%) from phytoplankton, which would contribute to the bioavailable DOM pool of the Eastern China Sea (ECS). However, multivariate analysis indicated that polycyclic aromatics and polyphenols from the Yangtze River experienced a significant decrease of 5% within the turbidity zone, creating a significant decrease of 0.08 in aromaticity index and modulating DOM content and compositions within the YRE. 1837 molecular formulae were identified to track dynamic behaviors of terrestrial DOM in the YRE. Molecular imprints showed the removal of terrestrial molecules in the turbidity zone indicated by the decrease of 753 in molecular quantity, when water masses mixing diluted the abundance of aromatic compounds. Adsorption and flocculation could serve important mechanisms to remove terrestrial DOM, promoting the burial of terrestrial DOM within estuarine sediments. Besides, some terrestrial molecular formulae were also detected in the ECS, suggesting the potential contribution of terrestrial DOM to the carbon stock of open seas after experiencing physical and photochemical transformations. This research provides a comprehensive insight into spatial variations of estuarine DOM composition, underlining the important role of estuaries in sorting and transporting DOM.

11.
Database (Oxford) ; 20202020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33181824

RESUMO

Accumulating evidences have shown that the deregulation of circRNA has close association with many human cancers. However, these experimental verified circRNA-cancer associations are not collected in any database. Here, we develop a manually curated database (circR2Cancer) that provides experimentally supported associations between circRNAs and cancers. The current version of the circR2Cancer contains 1439 associations between 1135 circRNAs and 82 cancers by extracting data from existing literatures and databases. In addition, circR2Cancer contains the information of cancer exacted from Disease Ontology and basic biological information of circRNAs from circBase. At the same time, circR2Cancer provides a simple and friendly interface for users to conveniently browse, search and download the data. It will be a useful and valuable resource for researchers to understanding the regulation mechanism of circRNA in cancers. DATABASE URL: http://www.biobdlab.cn:8000.


Assuntos
Neoplasias , RNA Circular , Bases de Dados Factuais , Humanos , Neoplasias/genética
12.
Environ Microbiol ; 21(3): 959-971, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30537399

RESUMO

The fungal pathogen Sporisorium scitamineum causes sugarcane smut disease. The formation and growth of dikaryotic hypha after sexual mating is critical for S. scitamineum pathogenicity, however regulation of S. scitimineum mating has not been studied in detail. We identified and characterized the core components of the conserved cAMP/PKA pathway in S. scitamineum by reverse genetics. Our results showed that cAMP/PKA signalling pathway is essential for proper mating and filamentation, and thus critical for S. scitamineum virulence. We further demonstrated that an elevated intracellular ROS (reactive oxygen species) level promotes S. scitamineum mating-filamentation, via transcriptional regulation of ROS catabolic enzymes, and is under regulation of the cAMP/PKA signalling pathway. Furthermore, we found that fungal cAMP/PKA signalling pathway is also involved in regulation of host ROS response. Overall, our work displayed a positive role of elevated intracellular ROS in fungal differentiation and virulence.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Doenças das Plantas/microbiologia , Saccharum/microbiologia , Ustilaginales/fisiologia , Homeostase , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Ustilaginales/patogenicidade , Virulência
13.
FEMS Microbiol Lett ; 336(1): 64-72, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22889301

RESUMO

S-adenosylhomocysteine (SAH), formed after donation of the methyl group of S-adenosylmethionine (SAM) to a methyl acceptor, is reversibly hydrolyzed to adenosine (ADO) and homocysteine (HCY) by S-adenosylhomocysteine hydrolase (SAHH). In chestnut blight fungus (Cryphonectria parasitica), sahh, a hypovirus-regulated gene that encodes a deduced SAHH protein was shown to have an SAHH enzymatic activity in vitro. Deletion of sahh resulted in the increased accumulation of intracellular SAH and SAM but decreased ADO, and a remarkably increased accumulation of transcripts that encode adenosine kinase, methionine adenosyltransferase, and an O-methyltransferase, key components of the methylation pathway. The Δsahh knockout mutants showed a phenotype of slower growth rate, fewer aerial hyphae, loss of orange pigment, absence of asexual fruiting bodies and conidia, and a significant reduction in virulence. Deletion of sahh significantly reduced the accumulation level of transcripts of the cyp1 that encodes cyclophilin A as well as genes of the heterotrimeric G-protein signaling pathways including cpga1, cpgb1, and cpgc1 and ste12, a target activated by the MAP kinase cascade. Taken together, we demonstrated that SAHH is required for virulence and multiple traits of phenotype in C. parasitica, by regulation of the expression of genes involved in key process of the cell.


Assuntos
Adenosil-Homocisteinase/metabolismo , Ascomicetos/enzimologia , Eleocharis/microbiologia , Proteínas Fúngicas/metabolismo , Doenças das Plantas/microbiologia , Adenosil-Homocisteinase/química , Adenosil-Homocisteinase/genética , Sequência de Aminoácidos , Ascomicetos/genética , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/patogenicidade , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Virulência
14.
Vet Microbiol ; 138(3-4): 273-80, 2009 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-19410387

RESUMO

The RNA genome sequence of the rabbit passage-attenuated strain of foot-and-mouth disease virus (FMDV) Asia 1, ZB/CHA/58(att), was determined to be 8165 nt in length excluding the poly(C) tract in the 5' UTR and the poly(A) tail at the 3' end. ZB/CHA/58(att) was most similar to the vaccine strain Asia 1/YNBS/58 in genome sequence and there were no deletions or insertions within the deduced polyprotein between ZB/CHA/58(att) and YNBS/58, but there were a total of 25 substitutions at the amino acid level and an extra 19-nt stretch in the 5' UTR was found in ZB/CHA/58(att). An infectious full-length cDNA clone of ZB/CHA/58(att) was developed. Infectious virus could be recovered in BHK-21 cells transfected with the synthetic viral RNA transcribed in vitro. The plaque morphology, growth kinetics and antigenic profile of the infectious clone-derived virus (termed tZB) were indistinguishable from those induced by the parental virus. Furthermore, the virulence properties of ZB/CHA/58(att) and tZB were found to be highly similar in the mouse model. The availability of genome sequence information and infectious cDNA clone of the FMDV ZB/CHA/58(att) lays a new ground for further investigation of FMDV virulence determinants and development of new potent vaccine to FMD.


Assuntos
DNA Complementar/genética , DNA Viral/genética , Vírus da Febre Aftosa/patogenicidade , Genoma Viral , Sequência de Aminoácidos , Animais , Sequência de Bases , Bovinos , Linhagem Celular , China/epidemiologia , Clonagem Molecular , Cricetinae , Febre Aftosa/epidemiologia , Febre Aftosa/virologia , Vírus da Febre Aftosa/classificação , Genes Virais , Filogenia , Proteínas Virais/química , Virulência
15.
Eukaryot Cell ; 1(3): 401-13, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12455988

RESUMO

Hypoviruses persistently alter multiple phenotypic traits, stably modify gene expression, and attenuate virulence (hypovirulence) of their pathogenic fungal host, the chestnut blight fungus Cryphonectria parasitica. The pleiotropic nature of these changes is consistent with hypovirus-mediated perturbation of one or more cellular signal transduction pathways. We now report that two hypoviruses that differ in the severity of symptom expression differentially perturb specific cellular signaling pathways. The C. parasitica 13-1 gene, originally identified as a hypovirus-inducible and cyclic AMP (cAMP)-regulated gene, was used to design a promoter-GFP reporter construct with which to monitor perturbation of cAMP-mediated signaling. Virus-mediated modulation of calcium/calmodulin/inositol trisphosphate-dependent signaling was monitored by measuring transcript accumulation from the C. parasitica laccase gene, lac-1. Infection by the severe hypovirus strain CHV1-EP713 caused a substantial induction of 13-1 promoter activity and a reduction of total extracellular laccase enzymatic activity (LAC-1 and LAC-3). In contrast, 13-1 promoter activity and total laccase activity were only marginally altered upon infection with the mild hypovirus strain CHV1-Euro7. However, examination of lac-1-specific transcript accumulation under previously defined culture conditions revealed that both CHV1-EP713 and CHV1-Euro7 perturbed calcium/calmodulin/inositol trisphosphate-dependent signaling. CHV1-EP713/CHV1-Euro7 chimeric viruses were used to map viral determinants responsible for modulation of cAMP-dependent signaling to domains within the central portion of the second open reading frame.


Assuntos
Ascomicetos/virologia , Vírus de RNA/fisiologia , Ascomicetos/metabolismo , Ascomicetos/patogenicidade , Sequência de Bases , AMP Cíclico/metabolismo , DNA Fúngico/genética , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Genes Reporter , Lacase , Fases de Leitura Aberta , Oxirredutases/genética , Regiões Promotoras Genéticas , Vírus de RNA/genética , RNA Polimerase Dependente de RNA/genética , Transdução de Sinais , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA