Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Front Oncol ; 14: 1381809, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835370

RESUMO

Aims: To observe the efficacy and safety of multimodal standardized analgesia in patients undergoing laparoscopic radical colorectal cancer surgery. Methods: A prospective, double-blind, randomized study of patients who were admitted to our hospital between December 2020 and March 2022 with a diagnosis of colorectal cancer and who intended to undergo elective laparoscopic radical colorectal cancer surgery was conducted. The participants were randomly divided into two intervention groups, namely, a multimodal standardized analgesia group and a routine analgesia group. In both groups, the visual analogue scale (VAS) pain scores while resting at 6 h, 24 h, 48 h and 72 h and during movement at 24 h, 48 h and 72 h; the number of patient controlled intravenous analgesia (PCIA) pump button presses and postoperative recovery indicators within 3 days after surgery; the interleukin-6 (IL-6) and C-reactive protein (CRP) levels on the 1st and 4th days after surgery; and the incidence of postoperative adverse reactions and complications were recorded. Results: Compared with the control group, the multimodal standardized analgesia group had significantly lower VAS pain scores at different time points while resting and during movement (P<0.05), significantly fewer PCIA pump button presses during the first 3 postoperative days (P<0.05), and significantly lower IL-6 and CRP levels on the 1st postoperative day (P<0.05). There was no statistically significant difference in the time to out-of-bed activity, the time to first flatus, the IL-6 and CRP levels on the 4th postoperative day or the incidence of postoperative adverse reactions and complications between the two groups (P >0.05). Conclusion: For patients undergoing laparoscopic radical colorectal cancer surgery, multimodal standardized analgesia with ropivacaine combined with parecoxib sodium and a PCIA pump had a better analgesic effect, as it effectively inhibited early postoperative inflammatory reactions and promoted postoperative recovery and did not increase the incidence of adverse reactions and complications. Therefore, it is worthy of widespread clinical practice.

2.
J Biol Chem ; 300(4): 107130, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432630

RESUMO

The actin cytoskeleton and reactive oxygen species (ROS) both play crucial roles in various cellular processes. Previous research indicated a direct interaction between two key components of these systems: the WAVE1 subunit of the WAVE regulatory complex (WRC), which promotes actin polymerization and the p47phox subunit of the NADPH oxidase 2 complex (NOX2), which produces ROS. Here, using carefully characterized recombinant proteins, we find that activated p47phox uses its dual Src homology 3 domains to bind to multiple regions within the WAVE1 and Abi2 subunits of the WRC, without altering WRC's activity in promoting Arp2/3-mediated actin polymerization. Notably, contrary to previous findings, p47phox uses the same binding pocket to interact with both the WRC and the p22phox subunit of NOX2, albeit in a mutually exclusive manner. This observation suggests that when activated, p47phox may separately participate in two distinct processes: assembling into NOX2 to promote ROS production and engaging with WRC to regulate the actin cytoskeleton.


Assuntos
NADPH Oxidase 2 , Família de Proteínas da Síndrome de Wiskott-Aldrich , Humanos , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , NADPH Oxidase 2/metabolismo , NADPH Oxidase 2/genética , NADPH Oxidases/metabolismo , NADPH Oxidases/genética , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Sítios de Ligação
3.
Nat Struct Mol Biol ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062209

RESUMO

The recycling of membrane proteins from endosomes to the cell surface is vital for cell signaling and survival. Retriever, a trimeric complex of vacuolar protein-sorting-associated protein (VPS)35L, VPS26C and VPS29, together with the CCC complex comprising coiled-coil domain-containing (CCDC)22, CCDC93 and copper metabolism domain-containing (COMMD) proteins, plays a crucial role in this process. The precise mechanisms underlying retriever assembly and its interaction with CCC have remained elusive. Here, we present a high-resolution structure of retriever in humans determined using cryogenic electron microscopy. The structure reveals a unique assembly mechanism, distinguishing it from its remotely related paralog retromer. By combining AlphaFold predictions and biochemical, cellular and proteomic analyses, we further elucidate the structural organization of the entire retriever-CCC complex across evolution and uncover how cancer-associated mutations in humans disrupt complex formation and impair membrane protein homeostasis. These findings provide a fundamental framework for understanding the biological and pathological implications associated with retriever-CCC-mediated endosomal recycling.

4.
J Cachexia Sarcopenia Muscle ; 14(6): 2824-2834, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37875291

RESUMO

BACKGROUND: Effective exercise for the frail elderly has been found to contribute to healthy aging; the corresponding relationship between intensity and volume of exercise and health effects remains unclear. The present study aimed to investigate the dose-response effects of resistance training on muscle strength and physical fitness in frail older adults. METHODS: In this randomized controlled trial, participants were randomized into seven groups: moderate-volume low-intensity, moderate-volume moderate-intensity, moderate-volume high-intensity, high-volume low-intensity, high-volume moderate-intensity, high-volume high-intensity and routine care, receiving 12 weeks of resistance training of different intensities and volumes of exercise. The outcomes were muscle strength (assessed by ergonomics force gauges) and physical fitness function (assessed by the 6-min walking test [6MWT], the 30-s sit-to-stand test [30sSTST] and the 8-foot up-and-go test [8-FUGT]) before and at 6 and 12 weeks of intervention. RESULTS: A total of 161 participants completed the exercise intervention. There were no significant differences in age, sex, height, body weight and body mass index among the seven groups. The exercise volume of resistance training showed linear relationships with muscle strength of the lower limbs, 30sSTST and 6MWT results and a non-linear relationship with 8-FUGT. Resistance training intensity was found to have a linear relationship with muscle strength of the lower limbs and 6MWT and non-linear relationships with 30sSTST and 8-FUGT. The mixed linear model analysis revealed that the lower limb muscle strength differed significantly before and during the intervention (W = 8571.5, Padj  < 0.001), before and after the intervention (W = 6968, Padj  = 0.001) and during and after the intervention (W = 2834.5, Padj  < 0.001); that the 6MWT performance differed during and after the intervention (W = 3184, Padj  < 0.001); and that the 30sSTST was different between before and during the intervention (W = 2350.5, Padj  = 0.012) and between during and after the intervention (W = 2290.5, Padj  = 0.045). CONCLUSIONS: Resistance training was found to be associated with muscle strength and physical fitness in frail older adults in a dose-dependent manner. High-intensity resistance training could be more effective for improving the muscle strength of frail older adults, and the improvement of 6MWT performance was even higher. High-volume resistance training significantly improved muscle strength, with even greater improvement in the 30sSTST and 6MWT performances. Both the intensity and volume of exercise were found to greatly value physical function in frail older adults. Low-moderate-intensity resistance training and low-moderate-volume resistance training also had some advantages in terms of safety, efficacy and acceptance in elderly with frailty.


Assuntos
Idoso Fragilizado , Treinamento Resistido , Humanos , Idoso , Pessoa de Meia-Idade , Treinamento Resistido/métodos , Aptidão Física/fisiologia , Exercício Físico/fisiologia , China
5.
Res Sq ; 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37397996

RESUMO

The recycling of membrane proteins from endosomes to the cell surface is vital for cell signaling and survival. Retriever, a trimeric complex of VPS35L, VPS26C and VPS29, together with the CCC complex comprising CCDC22, CCDC93, and COMMD proteins, plays a crucial role in this process. The precise mechanisms underlying Retriever assembly and its interaction with CCC have remained elusive. Here, we present the first high-resolution structure of Retriever determined using cryogenic electron microscopy. The structure reveals a unique assembly mechanism, distinguishing it from its remotely related paralog, Retromer. By combining AlphaFold predictions and biochemical, cellular, and proteomic analyses, we further elucidate the structural organization of the entire Retriever-CCC complex and uncover how cancer-associated mutations disrupt complex formation and impair membrane protein homeostasis. These findings provide a fundamental framework for understanding the biological and pathological implications associated with Retriever-CCC-mediated endosomal recycling.

6.
Nat Commun ; 14(1): 3541, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322026

RESUMO

The RAC1-WAVE-Arp2/3 signaling pathway generates branched actin networks that power lamellipodium protrusion of migrating cells. Feedback is thought to control protrusion lifetime and migration persistence, but its molecular circuitry remains elusive. Here, we identify PPP2R1A by proteomics as a protein differentially associated with the WAVE complex subunit ABI1 when RAC1 is activated and downstream generation of branched actin is blocked. PPP2R1A is found to associate at the lamellipodial edge with an alternative form of WAVE complex, the WAVE Shell Complex, that contains NHSL1 instead of the Arp2/3 activating subunit WAVE, as in the canonical WAVE Regulatory Complex. PPP2R1A is required for persistence in random and directed migration assays and for RAC1-dependent actin polymerization in cell extracts. PPP2R1A requirement is abolished by NHSL1 depletion. PPP2R1A mutations found in tumors impair WAVE Shell Complex binding and migration regulation, suggesting that the coupling of PPP2R1A to the WAVE Shell Complex is essential to its function.


Assuntos
Actinas , Pseudópodes , Actinas/metabolismo , Movimento Celular/fisiologia , Pseudópodes/metabolismo , Transdução de Sinais , Citoplasma/metabolismo , Fatores de Transcrição/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo
7.
bioRxiv ; 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37333304

RESUMO

The recycling of membrane proteins from endosomes to the cell surface is vital for cell signaling and survival. Retriever, a trimeric complex of VPS35L, VPS26C and VPS29, together with the CCC complex comprising CCDC22, CCDC93, and COMMD proteins, plays a crucial role in this process. The precise mechanisms underlying Retriever assembly and its interaction with CCC have remained elusive. Here, we present the first high-resolution structure of Retriever determined using cryogenic electron microscopy. The structure reveals a unique assembly mechanism, distinguishing it from its remotely related paralog, Retromer. By combining AlphaFold predictions and biochemical, cellular, and proteomic analyses, we further elucidate the structural organization of the entire Retriever-CCC complex and uncover how cancer-associated mutations disrupt complex formation and impair membrane protein homeostasis. These findings provide a fundamental framework for understanding the biological and pathological implications associated with Retriever-CCC-mediated endosomal recycling.

8.
Sci Adv ; 9(19): eadd5501, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37172092

RESUMO

Mirror movements (MM) disorder is characterized by involuntary movements on one side of the body that mirror intentional movements on the opposite side. We performed genetic characterization of a family with autosomal dominant MM and identified ARHGEF7, a RhoGEF, as a candidate MM gene. We found that Arhgef7 and its partner Git1 bind directly to Dcc. Dcc is the receptor for Netrin-1, an axon guidance cue that attracts commissural axons to the midline, promoting the midline crossing of axon tracts. We show that Arhgef7 and Git1 are required for Netrin-1-mediated axon guidance and act as a multifunctional effector complex. Arhgef7/Git1 activates Rac1 and Cdc42 and inhibits Arf1 downstream of Netrin-1. Furthermore, Arhgef7/Git1, via Arf1, mediates the Netrin-1-induced increase in cell surface Dcc. Mice heterozygous for Arhgef7 have defects in commissural axon trajectories and increased symmetrical paw placements during skilled walking, a MM-like phenotype. Thus, we have delineated how ARHGEF7 mutation causes MM.


Assuntos
Fatores de Crescimento Neural , Proteínas Supressoras de Tumor , Camundongos , Animais , Receptor DCC/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Fatores de Crescimento Neural/metabolismo , Netrina-1/genética , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Axônios/metabolismo
9.
Nat Commun ; 13(1): 5444, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36114192

RESUMO

The Rho-family GTPase Rac1 activates the WAVE regulatory complex (WRC) to drive Arp2/3 complex-mediated actin polymerization in many essential processes. Rac1 binds to WRC at two distinct sites-the A and D sites. Precisely how Rac1 binds and how the binding triggers WRC activation remain unknown. Here we report WRC structures by itself, and when bound to single or double Rac1 molecules, at ~3 Å resolutions by cryogenic-electron microscopy. The structures reveal that Rac1 binds to the two sites by distinct mechanisms, and binding to the A site, but not the D site, drives WRC activation. Activation involves a series of unique conformational changes leading to the release of sequestered WCA (WH2-central-acidic) polypeptide, which stimulates the Arp2/3 complex to polymerize actin. Together with biochemical and cellular analyses, the structures provide a novel mechanistic understanding of how the Rac1-WRC-Arp2/3-actin signaling axis is regulated in diverse biological processes and diseases.


Assuntos
Actinas , Família de Proteínas da Síndrome de Wiskott-Aldrich , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Citoplasma/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
10.
Brain Behav Immun ; 106: 11-20, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35914698

RESUMO

Schizophrenia (SZ) is influenced by genetic and environmental factors, and associated with chronic neuroinflammation. If the symptoms express after adolescence, environmental impacts are more substantial, and the disease is defined as adult-onset schizophrenia (AOS). Effects of environmental factors on antibody responses such as Escherichia coli (E. coli) to immunoglobulin G (IgG) and immunoglobulin M (IgM) might increase the severity of symptoms in SZ via the gut-brain axis. The purpose of this study is to reveal antibody profiles of SZ against bacterial protein antigens. We analyzed the IgG and IgM antibodies using E. coli proteome microarrays from 80 SZ patients and 40 healthy controls (HC). Using support vector machine to select panels of proteins differentiating between groups and conducted enrichment analysis for those proteins. We identified that the groL, pldA, yjjU, livG, and ftsE can classify IgGs in AOS vs HC achieved accuracy of 0.7. The protein yjjU, livG and ftsE can form the best combination panel to classify IgG in AOS vs HC with accuracy of 0.8. The enrichment results are highly related to ABC (ATP binding cassette) transporter in the protein domain and cellular component. We further found that the human ATP binding cassette subfamily b member 1 (ABCB1) autoantibody level in AOS is significantly higher than in HC. The findings suggest that AOS had different immunoglobulin production compared to early-onset schizophrenia (EOS) and HC. We also identified potential antibody biomarkers of AOS and found their antigens are enriched in ABC transporter related domains, including human ABCB1 protein.


Assuntos
Proteínas de Escherichia coli , Esquizofrenia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina , Adolescente , Adulto , Proteínas de Bactérias/metabolismo , Escherichia coli , Proteínas de Escherichia coli/metabolismo , Humanos , Imunoglobulina G , Imunoglobulina M/metabolismo , Proteoma/metabolismo
11.
Front Cell Dev Biol ; 9: 697614, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34631698

RESUMO

Intestinal fibrosis is one of the common pathophysiological processes in inflammatory bowel diseases (IBDs). Previously it has been demonstrated that epithelial-mesenchymal transition (EMT) can contribute to the development of intestinal fibrosis. Here we report that conditional ablation of SIRT1, a class III lysine deacetylase, in intestinal epithelial cells exacerbated 2, 4, 6-trinitro-benzene sulfonic acid (TNBS) induced intestinal fibrosis in mice. SIRT1 activity, but not SIRT1 expression, was down-regulated during EMT likely due to up-regulation of its inhibitor deleted in breast cancer 1 (DBC1). TGF-ß augmented the recruitment of KDM4A, a histone H3K9 demethylase, to the DBC1 promoter in cultured intestinal epithelial cells (IEC-6) leading to DBC1 trans-activation. KDM4A depletion or inhibition abrogated DBC1 induction by TGF-ß and normalized SIRT1 activity. In addition, KDM4A deficiency attenuated TGF-ß induced EMT in IEC-6 cells. In conclusion, our data identify a KDM4-DBC1-SIRT1 pathway that regulates EMT to contribute to intestinal fibrosis.

13.
Front Cell Dev Biol ; 9: 617549, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249900

RESUMO

Malignant colorectal cancers (CRCs) are characterized by enhanced migration and invasion thus acquiring the ability to metastasize. We have previously shown that the small GTPase TC10-like (TCL) contributes to aggressive migration and invasion in malignant CRC cells. TCL expression is differentially expressed in CRC cells and can be upregulated by hypoxia although the underlying epigenetic mechanism is not fully appreciated. Here, we report that differential TCL expression in CRC cells appeared to be associated with histone H3K9 methylation. RNAi screening revealed that the lysine demethylase KDM4B was essential for TCL transcription in CRC cells. KDM4B interacted with and was recruited by the sequence-specific transcription factor ETS-related gene 1 (ERG1) to the TCL promoter to activate transcription. Mechanistically, KDM4B mediated H3K9 demethylase facilitated the assembly of pre-initiation complex (PIC) on the TCL promoter. KDM4B knockdown attenuated migration and invasion of CRC cells. Importantly, KDM4B expression was upregulated in human CRC specimens of advanced stages compared to those of lower grades and associated with poor prognosis. Together, these data uncover a novel epigenetic mechanism underlying malignant transformation of CRC cells and suggest that KDM4B may be considered as a therapeutic target in CRC intervention.

14.
Front Cell Dev Biol ; 9: 664375, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249916

RESUMO

The small GTPase RHOJ is a key regulator of breast cancer metastasis by promoting cell migration and invasion. The prometastatic stimulus TGF-ß activates RHOJ transcription via megakaryocytic leukemia 1 (MKL1). The underlying epigenetic mechanism is not clear. Here, we report that MKL1 deficiency led to disrupted assembly of the RNA polymerase II preinitiation complex on the RHOJ promoter in breast cancer cells. This could be partially explained by histone H3K9/H3K27 methylation status. Further analysis confirmed that the H3K9/H3K27 dual demethylase JHDM1D/KDM7A was essential for TGF-ß-induced RHOJ transcription in breast cancer cells. MKL1 interacted with and recruited KDM7A to the RHOJ promoter to cooperatively activate RHOJ transcription. KDM7A knockdown attenuated migration and invasion of breast cancer cells in vitro and mitigated the growth and metastasis of breast cancer cells in nude mice. KDM7A expression level, either singularly or in combination with that of RHOJ, could be used to predict prognosis in breast cancer patients. Of interest, KDM7A appeared to be a direct transcriptional target of TGF-ß signaling. A SMAD2/SMAD4 complex bound to the KDM7A promoter and mediated TGF-ß-induced KDM7A transcription. In conclusion, our data unveil a novel epigenetic mechanism whereby TGF-ß regulates the transcription of the prometastatic small GTPase RHOJ. Screening for small-molecule inhibitors of KDM7A may yield effective therapeutic solutions to treat malignant breast cancers.

15.
Curr Biol ; 31(10): R512-R517, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34033782

RESUMO

Dynamic rearrangement of the actin cytoskeleton drives a myriad of processes in eukaryotic cells, such as cell migration and vesicle trafficking, and its dysregulation is deeply associated with various diseases, including cancer, immune deficiency, and neurological disorders. Members of the Wiskott-Aldrich syndrome protein (WASP) family, including WASP, N-WASP, WAVE, WASH, WHAMM, JMY, and the recently identified WHIMP, are ubiquitous regulators of actin dynamics. Although each WASP-family protein uses a different regulatory mechanism and participates in distinct cellular processes, they all act by integrating various upstream signals and transmitting them to their carboxy-terminal WCA (WH2-central-acidic, where WH2 stands for WASP homology 2) domain. This domain stimulates the actin nucleation activity of the Arp2/3 complex to promote the formation of new filaments from existing ones, creating branched actin networks that are crucial for dynamic deformations of membranes.


Assuntos
Actinas , Proteína da Síndrome de Wiskott-Aldrich , Citoesqueleto de Actina , Complexo 2-3 de Proteínas Relacionadas à Actina , Citoesqueleto , Família de Proteínas da Síndrome de Wiskott-Aldrich/genética
16.
PLoS One ; 15(12): e0243883, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33332386

RESUMO

OBJECTIVE: To estimate the prevalence of disability and anxiety in Covid-19 survivors at discharge from hospital and analyze relative risk by exposures. DESIGN: Multi-center retrospective cohort study. SETTING: Twenty-eight hospitals located in eight provinces of China. METHODS: A total of 432 survivors with laboratory-confirmed SARS CoV-2 infection participated in this study. At discharge, we assessed instrumental activities of daily living (IADL) with Lawton's IADL scale, dependence in activities of daily living (ADL) with the Barthel Index, and anxiety with Zung's self-reported anxiety scale. Exposures included comorbidity, smoking, setting (Hubei vs. others), disease severity, symptoms, and length of hospital stay. Other risk factors considered were age, gender, and ethnicity (Han vs. Tibetan). RESULTS: Prevalence of at least one IADL problem was 36.81% (95% CI: 32.39-41.46). ADL dependence was present in 16.44% (95% CI: 13.23-20.23) and 28.70% (95% CI: 24.63-33.15) were screened positive for clinical anxiety. Adjusted risk ratio (RR) of IADL limitations (RR 2.48, 95% CI: 1.80-3.40), ADL dependence (RR 2.07, 95% CI 1.15-3.76), and probable clinical anxiety (RR 2.53, 95% CI 1.69-3.79) were consistently elevated in survivors with severe Covid-19. Age was an additional independent risk factor for IADL limitations and ADL dependence; and setting (Hubei) for IADL limitations and anxiety. Tibetan ethnicity was a protective factor for anxiety but a risk factor for IADL limitations. CONCLUSION: A significant proportion of Covid-19 survivors had disability and anxiety at discharge from hospital. Health systems need to be prepared for an additional burden resulting from rehabilitation needs of Covid-19 survivors.


Assuntos
Transtornos de Ansiedade , COVID-19 , Pessoas com Deficiência , SARS-CoV-2 , Sobreviventes , Atividades Cotidianas , Adulto , Fatores Etários , Idoso , Transtornos de Ansiedade/epidemiologia , Transtornos de Ansiedade/psicologia , COVID-19/mortalidade , COVID-19/psicologia , China/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , Estudos Retrospectivos , Fatores de Risco
17.
Oncogenesis ; 9(9): 86, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32999272

RESUMO

TC10-like (TCL) is a small GTPase that has been implicated in carcinogenesis. Elevated TCL expression has been observed in many different types of cancers although the underlying epigenetic mechanism is poorly understood. Here we report that TCL up-regulation was associated with high malignancy in both human colorectal cancer biopsy specimens and in cultured colorectal cancer cells. Hypoxia, a pro-metastatic stimulus, up-regulated TCL expression in HT-29 cells. Further studies revealed that myocardin-related transcription factor A (MRTF-A) promoted migration and invasion of HT-29 cells in a TCL-dependent manner. MRTF-A directly bound to the proximal TCL promoter in response to hypoxia to activate TCL transcription. Chromatin immunoprecipitation (ChIP) assay showed that hypoxia stimulation specifically enhanced acetylation of histone H4K16 surrounding the TCL promoter, which was abolished by MRTF-A depletion or inhibition. Mechanistically, MRTF-A interacted with and recruited the H4K16 acetyltransferase hMOF to the TCL promoter to cooperatively regulate TCL transcription. hMOF depletion or inhibition attenuated hypoxia-induced TCL expression and migration/invasion of HT-29 cells. In conclusion, our data identify a novel MRTF-A-hMOF-TCL axis that contributes to colorectal cancer metastasis.

18.
Front Cell Dev Biol ; 8: 581692, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33043016

RESUMO

A disintegrin and metalloproteinase (ADAM) family of proteins play versatile roles in cancer development and progression. In the present study, we investigated the role of ADAM proteins in colorectal cancer (CRC) cell migration and invasion focusing on the epigenetic mechanism whereby ADAM transcription is regulated. We report that higher levels of ADAM10, ADAM17, and ADAM19 were detected in SW480 cells than in HCT116 cells. Expression levels of the same set of ADAMs were higher in human CRC biopsy specimens of advanced stages than in those of a less aggressive phenotype. Overexpression of ADAM10/17/19 in HCT116 cells enhanced, whereas depletion of ADAM10/17/19 in SW480 cells weakened, migration and invasion. ADAM expression was activated by the Wnt signaling pathway, which could be attributed to direct binding of ß-catenin on the ADAM promoters. Mechanistically, ß-catenin recruited the chromatin remodeling protein BRG1, which in turn enlisted histone demethylase KDM4 to alter the chromatin structure, thereby leading to ADAM transactivation. In conclusion, our data suggest that the Wnt signaling may promote CRC metastasis, at least in part, by recruiting an epigenetic complex to activate ADAM transcription.

19.
Front Cell Dev Biol ; 8: 832, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32984327

RESUMO

Differential regulation of gene transcription contributes to cancer metastasis. We investigated the involvement of a Rho GTPase (RhoJ) in breast cancer metastasis focusing on the mechanism underlying RhoJ trans-activation by pro-metastatic cues. We report that expression of RhoJ was up-regulated in malignant breast cancer cells compared to more benign ones. Higher RhoJ expression was also detected in human breast cancer biopsy specimens of advanced stages. RhoJ depletion attenuated breast cancer cell migration and invasion in vitro and metastasis in vivo. The pro-metastatic stimulus TGF-ß activated RhoJ via megakaryocytic leukemia 1 (MKL1). MKL1 interacted with and was recruited by ETS-related gene 1 (ERG1) to the RhoJ promoter to activate transcription. In conclusion, our data delineate a novel transcriptional pathway that contributes to breast cancer metastasis. Targeting the ERG1-MKL1-RhoJ axis may be considered as a reasonable approach to treat malignant breast cancer.

20.
Science ; 369(6500): 202-207, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32647003

RESUMO

Immunodeficiency often coincides with hyperactive immune disorders such as autoimmunity, lymphoproliferation, or atopy, but this coincidence is rarely understood on a molecular level. We describe five patients from four families with immunodeficiency coupled with atopy, lymphoproliferation, and cytokine overproduction harboring mutations in NCKAP1L, which encodes the hematopoietic-specific HEM1 protein. These mutations cause the loss of the HEM1 protein and the WAVE regulatory complex (WRC) or disrupt binding to the WRC regulator, Arf1, thereby impairing actin polymerization, synapse formation, and immune cell migration. Diminished cortical actin networks caused by WRC loss led to uncontrolled cytokine release and immune hyperresponsiveness. HEM1 loss also blocked mechanistic target of rapamycin complex 2 (mTORC2)-dependent AKT phosphorylation, T cell proliferation, and selected effector functions, leading to immunodeficiency. Thus, the evolutionarily conserved HEM1 protein simultaneously regulates filamentous actin (F-actin) and mTORC2 signaling to achieve equipoise in immune responses.


Assuntos
Actinas/metabolismo , Citocinas/biossíntese , Síndromes de Imunodeficiência/genética , Transtornos Linfoproliferativos/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteínas de Membrana/fisiologia , Fator 1 de Ribosilação do ADP/metabolismo , Linfócitos T CD4-Positivos/imunologia , Proliferação de Células , Humanos , Síndromes de Imunodeficiência/imunologia , Transtornos Linfoproliferativos/imunologia , Proteínas de Membrana/genética , Linhagem , Fosforilação , Família de Proteínas da Síndrome de Wiskott-Aldrich/química , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA