Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
2.
Oncogene ; 41(4): 489-501, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34775484

RESUMO

Chromosomal instability (CIN) is a driving force for cancer development. The most common causes of CIN include the dysregulation of the spindle assembly checkpoint (SAC), which is a surveillance mechanism that prevents premature chromosome separation during mitosis by targeting anaphase-promoting complex/cyclosome (APC/C). DAB2IP is frequently silenced in advanced prostate cancer (PCa) and is associated with aggressive phenotypes of PCa. Our previous study showed that DAB2IP activates PLK1 and functions in mitotic regulation. Here, we report the novel mitotic phosphorylation of DAB2IP by Cdks, which mediates DAB2IP's interaction with PLK1 and the activation of the PLK1-Mps1 pathway. DAB2IP interacts with Cdc20 in a phosphorylation-independent manner. However, the phosphorylation of DAB2IP inhibits the ubiquitylation of Cdc20 in response to SAC, and blocks the premature release of the APC/C-MCC. The PLK1-Mps1 pathway plays an important role in mitotic checkpoint complex (MCC) assembly. It is likely that DAB2IP acts as a scaffold to aid PLK1-Mps1 in targeting Cdc20. Depletion or loss of the Cdks-mediated phosphorylation of DAB2IP destabilizes the MCC, impairs the SAC, and increases chromosome missegregation and subsequent CIN, thus contributing to tumorigenesis. Collectively, these results demonstrate the mechanism of DAB2IP in SAC regulation and provide a rationale for targeting the SAC to cause lethal CIN against DAB2IP-deficient aggressive PCa, which exhibits a weak SAC.


Assuntos
Pontos de Checagem do Ciclo Celular/genética , Instabilidade Cromossômica/genética , Mitose/genética , Oncogenes/genética , Fuso Acromático/metabolismo , Humanos , Fosforilação , Transdução de Sinais , Transfecção
3.
Mol Cancer Res ; 20(4): 583-595, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34933911

RESUMO

The heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), telomeric repeat-containing RNA (TERRA), and protection of telomeres 1 (POT1) have been reported to orchestrate to displace replication protein A (RPA) from telomeric overhangs, ensuring orderly telomere replication and capping. Our previous studies further demonstrated that DNA-dependent protein kinase catalytic subunit (DNA-PKcs)-dependent hnRNPA1 phosphorylation plays a crucial role in the promotion of hnRNPA1 binding to telomeric overhangs and RPA displacement during G2-M phases. However, it is unclear that how the subsequent exchange between hnRNPA1 and POT1 is orchestrated. Here we report that the protein phosphatase 2A (PP2A) depends on its scaffold subunit, which is called PPP2R1A, to interact with and dephosphorylate hnRNPA1 in the late M phase. Furthermore, PP2A-mediated hnRNPA1 dephosphorylation and TERRA accumulation act in concert to promote the hnRNPA1-to-POT1 switch on telomeric single-stranded DNA. Consequently, defective PPP2R1A results in ataxia telangiectasia and Rad3-related (ATR)-mediated DNA damage response at telomeres as well as induction of fragile telomeres. Combined inhibition of ATR and PP2A induces entry into a catastrophic mitosis and leads to synthetic lethality of tumor cells. In addition, PPP2R1A levels correlate with clinical stages and prognosis of multiple types of cancers. Taken together, our results indicate that PP2A is critical for telomere maintenance. IMPLICATIONS: This study demonstrates that the PP2A-dependent hnRNPA1 dephosphorylation and TERRA accumulation facilitates the formation of the protective capping structure of newly replicated telomeres, thus exerting essential oncogenic role in tumorigenesis.


Assuntos
Proteína Fosfatase 2 , Proteínas de Ligação a Telômeros , Proteínas de Ligação a DNA , Ribonucleoproteína Nuclear Heterogênea A1/genética , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Humanos , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo , Telômero/genética , Telômero/metabolismo , Proteínas de Ligação a Telômeros/genética , Fatores de Transcrição
4.
Open Biol ; 11(10): 210221, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34610268

RESUMO

RNA polymerase II (Pol II)-dependent transcription in stimulus-inducible genes requires topoisomerase IIß (TOP2B)-mediated DNA strand break and the activation of DNA damage response signalling in humans. Here, we report a novel function of the breast cancer 1 (BRCA1)-BRCA1-associated ring domain 1 (BARD1) complex in this process. We found that BRCA1 is phosphorylated at S1524 by the kinases ataxia-telangiectasia mutated and ATR during gene activation, and that this event is important for productive transcription. Our biochemical and genomic analyses showed that the BRCA1-BARD1 complex interacts with TOP2B in the EGR1 transcription start site and in a large number of protein-coding genes. Intriguingly, the BRCA1-BARD1 complex ubiquitinates TOP2B, which stabilizes TOP2B binding to DNA while BRCA1 phosphorylation at S1524 controls the TOP2B ubiquitination by the complex. Together, these findings suggest the novel function of the BRCA1-BARD1 complex in the regulation of TOP2B and Pol II-mediated gene expression.


Assuntos
Proteína BRCA1/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Proteínas Imediatamente Precoces/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteína BRCA1/química , Proteína 1 de Resposta de Crescimento Precoce/genética , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Mutação , Fosforilação , Sítio de Iniciação de Transcrição , Transcrição Gênica , Ubiquitinação
5.
Int J Radiat Oncol Biol Phys ; 110(5): 1306-1316, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33794306

RESUMO

PURPOSE: Harnessing the immune-stimulatory effects of radiation by combining it with immunotherapy is a promising new treatment strategy. However, more studies characterizing immunotherapy and radiation dose scheduling for the optimal therapeutic effect is essential for designing clinical trials. METHODS AND MATERIALS: A new ablative radiation dosing scheme, personalized ultrafractionated stereotactic adaptive radiation therapy (PULSAR), was tested in combination with α-PD-L1 therapy in immune-activated and resistant syngeneic immunocompetent mouse models of cancer. Specifically, tumor growth curves comparing immunotherapy and radiation therapy dose sequencing were evaluated in immunologically cold and hot tumor models. The response relative to cytotoxic killer T cells was evaluated using an α-CD8 depleting antibody, and immunologic memory was tested by tumor rechallenge of cured mice. RESULTS: We report that both radiation and immunotherapy sequencing, as well as radiation therapy fraction spacing, affect the combination treatment response. Better tumor control was achieved by giving α-PD-L1 therapy during or after radiation, and spacing fractions 10 days apart (PULSAR) achieved better tumor control than traditional daily fractions. We showed that CD8+ depleting antibody abrogated tumor control in the PULSAR combination treatment, and certain treatment schedules induced immunologic memory. CONCLUSIONS: These results illustrate that radiation therapy dosing and scheduling affect tumor control, in combination with checkpoint blockade therapies. PULSAR-style radiation dosing is more complementary in combination with single-agent immunotherapy than traditional daily fractions in this preclinical model. Preclinical investigation could prove helpful in designing clinical trials investigating combination therapy.


Assuntos
Carcinoma Pulmonar de Lewis/terapia , Neoplasias do Colo/terapia , Fracionamento da Dose de Radiação , Inibidores de Checkpoint Imunológico/farmacologia , Medicina de Precisão/métodos , Radioimunoterapia/métodos , Radiocirurgia/métodos , Animais , Antígeno B7-H1 , Carcinoma Pulmonar de Lewis/imunologia , Linhagem Celular Tumoral , Neoplasias do Colo/imunologia , Feminino , Memória Imunológica , Camundongos , Camundongos Endogâmicos C57BL , Dosagem Radioterapêutica , Distribuição Aleatória , Linfócitos T Citotóxicos , Resultado do Tratamento
6.
Cell Cycle ; 20(2): 211-224, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33404279

RESUMO

Combining targeted therapeutic agents is an attractive cancer treatment strategy associated with high efficacy and low toxicity. DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is an essential factor in DNA damage repair. Studies from us and others have revealed that DNA-PKcs also plays an important role in normal mitosis progression. Histone deacetylase (HDACs) inhibitors commonly lead to mitotic aberration and have been approved for treating various cancers in the clinic. We showed that DNA-PKcs depletion or kinase activity inhibition increases cancer cells' sensitivity to HDACs inhibitors in vitro and in vivo. DNA-PKcs deficiency significantly enhances HDACs inhibitors (HDACi)-induced mitotic arrest and is followed by apoptotic cell death. Mechanistically, we found that DNA-PKcs binds to HDAC6 and facilitates its acetylase activity. HDACi is more likely to impair HDAC6-induced deacetylation of HSP90 and abrogate HSP90's chaperone function on Aurora A, a critical mitotic kinase that regulates centrosome separation and mitotic spindle assembly in DNA-PKcs-deficient cells. Our current work indicates crosstalk between DNA-PKcs and HDACs signaling pathways, and highlights that the combined targeting of DNA-PKcs and HDACs can be used in cancer therapy. Abbreviations: DNA-PKcs, DNA-dependent protein kinase catalytic subunit, HDACs, Histone deacetylases, DSBs, DNA double-strand breaks, ATM, ataxia telangiectasia mutated, ATR, ATM-Rad3-related.


Assuntos
Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Desacetilase 6 de Histona/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/metabolismo , Divisão do Núcleo Celular/genética , Divisão do Núcleo Celular/fisiologia , Dano ao DNA/genética , Reparo do DNA/genética , Desacetilase 6 de Histona/genética , Humanos , Proteínas Supressoras de Tumor/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-33035680

RESUMO

Hematopoiesis, the complex developmental process that forms blood components and replenishes the blood system, involves multiple intracellular and extracellular mechanisms. We previously demonstrated that lysophosphatidic acid (LPA), a lipid growth factor, has opposing regulatory effects on erythrocyte differentiation through activation of LPA receptors 2 and 3; yet the mechanisms underlying this process remain unclear. In this study, LPA2 is observed that highly expressed in common myeloid progenitors (CMP) in murine myeloid cells, whereas the expression of LPA3 displaces in megakaryocyte-erythroid progenitors (MEP) of later stage of myeloid differentiation. Therefore, we hypothesized that the switching expression of LPA2 and LPA3 determine the hematic homeostasis of mammalian megakaryocytic-erythroid lineage. In vitro colony-forming unit assays of murine progenitors reveal that LPA2 agonist GRI reduces the erythroblast differentiation potential of CMP. In contrast, LPA3 agonist OMPT increases the production of erythrocytes from megakaryocyte-erythrocyte progenitor cells (MEP). In addition, treatment with GRI reduces the erythroid, CMP, and MEP populations in mice, indicating that LPA2 predominantly inhibits myeloid differentiation at an early stage. In contrast, activation of LPA3 increases the production of terminally differentiated erythroid cells through activation of erythropoietic transcriptional factor. We also demonstrate that the LPA3 signaling is essential for restoration of phenylhydrazine (PHZ)-induced acute hemolytic anemia in mice and correlates to erythropoiesis impairment of Hutchinson-Gilford progeria Symptom (HGPS) premature aging expressed K562 model. Our results reveal the distinct roles of LPA2 and LPA3 at different stages of hematopoiesis in vivo, providing potentiated therapeutic strategies of anemia treatment.


Assuntos
Anemia Hemolítica/genética , Células Eritroides/metabolismo , Eritropoese/genética , Células Mieloides/metabolismo , Receptores de Ácidos Lisofosfatídicos/genética , Células-Tronco/metabolismo , Anemia Hemolítica/induzido quimicamente , Anemia Hemolítica/tratamento farmacológico , Anemia Hemolítica/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/genética , Modelos Animais de Doenças , Células Eritroides/citologia , Células Eritroides/efeitos dos fármacos , Eritropoese/efeitos dos fármacos , Regulação da Expressão Gênica , Humanos , Isoquinolinas/farmacologia , Células K562 , Lisofosfolipídeos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Células Mieloides/citologia , Células Mieloides/efeitos dos fármacos , Organotiofosfatos/farmacologia , Fenil-Hidrazinas/administração & dosagem , Ácidos Fosfatídicos/farmacologia , Receptores de Ácidos Lisofosfatídicos/agonistas , Receptores de Ácidos Lisofosfatídicos/metabolismo , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos
8.
Endocr Relat Cancer ; 27(5): R133-R144, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32203935

RESUMO

In mammalian cells, extracellular vesicles (EVs) derived from the endosomal system carry many different kinds of bioactive molecule to deliver to recipient cells in a paracrine or endocrine manner. EVs can mediate local and systemic intercellular communications, including reeducating stromal cells, remodeling the architecture of the tumor microenvironment, modulating cancer metabolism and metastases, or even conferring drug resistance. Because the molecular and functional characteristics of prostate cancer (PCa) evolve over time, the bioactive molecule profiles/signatures of tumor-derived EVs (TDEs) reflect the real-time status of cancer cells. TDEs appear to be valuable diagnostic and prognostic biomarkers as well as potential therapeutic vehicles, suggesting their essential role in precision medicine of disease management. We summarized critical aspects of TDEs in PCa and discussed their potential clinical applications.


Assuntos
Vesículas Extracelulares/metabolismo , Neoplasias da Próstata/metabolismo , Biomarcadores Tumorais/metabolismo , Humanos , Masculino , Prognóstico
9.
Sci Rep ; 10(1): 2737, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-32066765

RESUMO

Astronauts on interplanetary missions - such as to Mars - will be exposed to space radiation, a spectrum of highly-charged, fast-moving particles that includes 56Fe and 28Si. Earth-based preclinical studies show space radiation decreases rodent performance in low- and some high-level cognitive tasks. Given astronaut use of touchscreen platforms during training and space flight and given the ability of rodent touchscreen tasks to assess functional integrity of brain circuits and multiple cognitive domains in a non-aversive way, here we exposed 6-month-old C57BL/6J male mice to whole-body space radiation and subsequently assessed them on a touchscreen battery. Relative to Sham treatment, 56Fe irradiation did not overtly change performance on tasks of visual discrimination, reversal learning, rule-based, or object-spatial paired associates learning, suggesting preserved functional integrity of supporting brain circuits. Surprisingly, 56Fe irradiation improved performance on a dentate gyrus-reliant pattern separation task; irradiated mice learned faster and were more accurate than controls. Improved pattern separation performance did not appear to be touchscreen-, radiation particle-, or neurogenesis-dependent, as 56Fe and 28Si irradiation led to faster context discrimination in a non-touchscreen task and 56Fe decreased new dentate gyrus neurons relative to Sham. These data urge revisitation of the broadly-held view that space radiation is detrimental to cognition.


Assuntos
Cognição/efeitos da radiação , Radiação Cósmica , Giro Denteado/efeitos da radiação , Aprendizagem por Associação de Pares/efeitos da radiação , Reconhecimento Visual de Modelos/efeitos da radiação , Reversão de Aprendizagem/efeitos da radiação , Animais , Astronautas , Ciências Biocomportamentais , Cognição/fisiologia , Giro Denteado/fisiologia , Isótopos de Ferro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Neurônios/fisiologia , Neurônios/efeitos da radiação , Aprendizagem por Associação de Pares/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Reversão de Aprendizagem/fisiologia , Voo Espacial , Irradiação Corporal Total
10.
Cell Chem Biol ; 27(1): 105-121.e14, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31883965

RESUMO

RUVBL1 and RUVBL2 (collectively RUVBL1/2) are essential AAA+ ATPases that function as co-chaperones and have been implicated in cancer. Here we investigated the molecular and phenotypic role of RUVBL1/2 ATPase activity in non-small cell lung cancer (NSCLC). We find that RUVBL1/2 are overexpressed in NSCLC patient tumors, with high expression associated with poor survival. Utilizing a specific inhibitor of RUVBL1/2 ATPase activity, we show that RUVBL1/2 ATPase activity is necessary for the maturation or dissociation of the PAQosome, a large RUVBL1/2-dependent multiprotein complex. We also show that RUVBL1/2 have roles in DNA replication, as inhibition of its ATPase activity can cause S-phase arrest, which culminates in cancer cell death via replication catastrophe. While in vivo pharmacological inhibition of RUVBL1/2 results in modest antitumor activity, it synergizes with radiation in NSCLC, but not normal cells, an attractive property for future preclinical development.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proteínas de Transporte/metabolismo , DNA Helicases/metabolismo , Replicação do DNA , Neoplasias Pulmonares/metabolismo , Complexos Multiproteicos/metabolismo , ATPases Associadas a Diversas Atividades Celulares/antagonistas & inibidores , ATPases Associadas a Diversas Atividades Celulares/genética , Antineoplásicos/química , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , DNA Helicases/antagonistas & inibidores , DNA Helicases/genética , Replicação do DNA/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamento farmacológico , Estrutura Molecular , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/genética , Tolerância a Radiação
11.
Toxicol Appl Pharmacol ; 387: 114855, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31830491

RESUMO

Vanillin is a natural compound endowed with antioxidant and anti-mutagenic properties. We previously identified the vanillin derivative VND3207 with strong radio-protective and antioxidant effects and found that VND3207 confers survival benefit and protection against radiation-induced intestinal injury (RIII) in mice. We also observed that VND3207 treatment enhanced the expression level of the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs) in human lymphoblastoid cells with or without γ-irradiation. DNA-PKcs is a critical component of DNA double strand break repair pathway and also regulates mitotic progression by stabilizing spindle formation and preventing mitotic catastrophe in response to DNA damage. In the present study, we found that VND3207 protected intestinal epithelial cells in vitro against ionizing radiation by promoting cell proliferation and inhibiting cell apoptosis. In addition, VND3207 promoted DNA-PKcs activity by increasing autophosphorylation at S2056 site. Consistent with this, VND3207 significantly decreased the number of γH2AX foci and mitotic catastrophe after radiation. DNA-PKcs deficiency abolished these VND3207 radio-protective effects, indicating that DNA-PKcs activation is essential for VND3207 activity. In conclusion, VND3207 promoted intestinal repair following radiation injury by regulating the DNA-PKcs pathway.


Assuntos
Benzaldeídos/farmacologia , Proteína Quinase Dependente de GMP Cíclico Tipo I/metabolismo , Proteína Quinase Ativada por DNA/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Lesões Experimentais por Radiação/prevenção & controle , Protetores contra Radiação/farmacologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Proteína Quinase Ativada por DNA/genética , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Células Epiteliais/efeitos da radiação , Raios gama/efeitos adversos , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/patologia , Mucosa Intestinal/efeitos da radiação , Mutação com Perda de Função , Masculino , Camundongos , Fosforilação/efeitos dos fármacos , Lesões Experimentais por Radiação/patologia , Protetores contra Radiação/uso terapêutico
12.
Free Radic Biol Med ; 145: 223-236, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31580946

RESUMO

The intestine is a highly radiosensitive tissue that is susceptible to structural and functional damage due to systemic as well as localized radiation exposure. Unfortunately, no effective prophylactic or therapeutic agents are available at present to manage radiation-induced intestinal injuries. We observed that the vanillin derivative VND3207 improved the survival of lethally irradiated mice by promoting intestinal regeneration and increasing the number of surviving crypts. Pre-treatment with VND3207 significantly increased the number of Lgr5+ intestinal stem cells (ISCs) and their daughter cells, the transient Ki67+ proliferating cells. Mechanistically, VND3207 decreased oxidative DNA damage and lipid peroxidation and maintained endogenous antioxidant status by increasing the level of superoxide dismutase and total antioxidant capacity. In addition, VND3207 maintained appropriate levels of activated p53 that triggered cell cycle arrest but were not sufficient to induce NOXA-mediated apoptosis, thus ensuring DNA damage repair in the irradiated small intestinal crypt cells. Furthermore, VND3207 treatment restores the intestinal bacterial flora structures altered by TBI exposure. In conclusion, VND3207 promoted intestinal repair following radiation injury by reducing reactive oxygen species-induced DNA damage and modulating appropriate levels of activated p53 in intestinal epithelial cells.


Assuntos
Benzaldeídos/farmacologia , Microbioma Gastrointestinal/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Receptores Acoplados a Proteínas G/genética , Proteína Supressora de Tumor p53/genética , Animais , Antioxidantes/farmacologia , Benzaldeídos/química , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/efeitos da radiação , Microbioma Gastrointestinal/efeitos da radiação , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos da radiação , Humanos , Intestinos/efeitos dos fármacos , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Exposição à Radiação/efeitos adversos , Lesões por Radiação/genética , Lesões por Radiação/prevenção & controle , Tolerância a Radiação/genética , Transdução de Sinais/efeitos da radiação , Células-Tronco/efeitos dos fármacos
13.
Sci Rep ; 9(1): 10120, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31300742

RESUMO

Therapeutic drug synergism intervened in cancer treatments has been demonstrated to be more effective than using a single effector. However, it remains inherently challenging, with a limited cell count from tumor samples, to achieve potent personalized drug cocktails. To address the issue above, we herein present a nanodroplet cell processing platform. The platform incorporates an automatic nanodroplet dispenser with cell array ParaStamp chips, which were fabricated by a new wax stamping approach derived from laser direct writing. Such approach enables not only the on-demand de-wetting with hydrophobic wax films on substrates but also the mask-less fabrication of non-planar microstructures (i.e. no photolithography process). The ParaStamp chip was pre-occupied with anti-cancer drugs and their associate mixtures, enabling for the spatially addressable screening of optimal drug combinations simultaneously. Each droplet with a critical volume of 200 nl containing with 100 cells was utilized. Results revealed that the optimal combination reduces approximate 28-folds of conducted doses compared with single drugs. Tumor inhibition with the optimally selected drug combination was further confirmed by using PC-3 tumor-bearing mouse models. Together, the nanodroplet cell processing platform could therefore offer new opportunities to power the personalized cancer medicine at early-stage drug screening and discovery.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais/instrumentação , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Animais , Dimetilpolisiloxanos , Sinergismo Farmacológico , Desenho de Equipamento , Ensaios de Triagem em Larga Escala/instrumentação , Ensaios de Triagem em Larga Escala/métodos , Humanos , Lasers , Masculino , Camundongos Nus , Miniaturização , Células PC-3 , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Nature ; 569(7756): E4, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31043737

RESUMO

Further analysis has revealed that the signal reported in Extended Data Fig. 1c of this Letter is attributed to phosphorylethanolamine, not carbamoyl phosphate. A newly developed derivatization method revealed that the level of carbamoyl phosphate in these NSCLC extracts is below the detection threshold of approximately 10 nanomoles. These findings do not alter the overall conclusions of the Letter; see associated Amendment for full details. The Letter has not been corrected online.

15.
Clin Cancer Res ; 25(14): 4542-4551, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31000589

RESUMO

PURPOSE: Renal cell carcinoma (RCC) is known to be highly radioresistant but the mechanisms associated with radioresistance have remained elusive. We found DOC-2/DAB2 interactive protein (DAB2IP) frequently downregulated in RCC, is associated with radioresistance. In this study, we investigated the underlying mechanism regulating radioresistance by DAB2IP and developed appropriate treatment. EXPERIMENTAL DESIGN: Several RCC lines with or without DAB2IP expression were irradiated with ionizing radiation (IR) for determining their radiosensitivities based on colony formation assay. To investigate the underlying regulatory mechanism of DAB2IP, immunoprecipitation-mass spectrometry was performed to identify DAB2IP-interactive proteins. PARP-1 expression and enzymatic activity were determined using qRT-PCR, Western blot analysis, and ELISA. In vivo ubiquitination assay was used to test PARP-1 degradation. Furthermore, in vivo mice xenograft model and patient-derived xenograft (PDX) model were used to determine the effect of combination therapy to sensitizing tumors to IR. RESULTS: We notice that DAB2IP-deficient RCC cells acquire IR-resistance. Mechanistically, DAB2IP can form a complex with PARP-1 and E3 ligases that is responsible for degrading PARP-1. Indeed, elevated PARP-1 levels are associated with the IR resistance in RCC cells. Furthermore, PARP-1 inhibitor can enhance the IR response of either RCC xenograft model or PDX model. CONCLUSIONS: In this study, we unveil that loss of DAB2IP resulted in elevated PARP-1 protein is associated with IR-resistance in RCC. These results provide a new targeting strategy to improve the efficacy of radiotherapy of RCC.


Assuntos
Carcinoma de Células Renais/patologia , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Neoplasias Renais/patologia , Tolerância a Radiação/genética , Proteínas Ativadoras de ras GTPase/antagonistas & inibidores , Animais , Apoptose , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Proliferação de Células , Regulação para Baixo , Feminino , Humanos , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Radiação Ionizante , Transdução de Sinais , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas Ativadoras de ras GTPase/genética
16.
Cell Physiol Biochem ; 50(2): 597-611, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30317243

RESUMO

BACKGROUND/AIMS: Hyperglycemia has been shown to increase the incidence and metastasis in various types of cancers. However, the correlation between hyperglycemia and lymphatic metastasis in prostate cancer (PCa) remains unclear. Our previous study demonstrated that lysophosphatidic acid (LPA) enhances vascular endothelial growth factor-C (VEGF-C) expression, a lymphangiogenic factor, through activating it receptors LPA1/3 in prostate cancer (PCa) cells. Moreover, hyperglycemia up-regulates autotaxin (ATX) expression, a LPA-generating enzyme. Therefore, we propose that high glucose promotes VEGF-C expression through LPA signaling in PCa cells. METHODS: Pharmacological inhibitors and siRNAs were utilized to investigate the molecular mechanism of high glucose-induced VEGF-C expression. Real-time PCR and Western blot were used to determine the mRNA and protein expressions, respectively. Cellular bioenergetics analysis was performed to determine the glycolysis levels. RESULTS: We demonstrated that the expressions of VEGF-C, ATX, and calreticulin were increased upon high glucose treatments in PC-3 cells. Moreover, high glucose-induced VEGF-C expression was mediated through the LPA1/3, PLC, Akt, ROS and LEDGF-dependent pathways. Additionally, high glucose enhanced the aerobic glycolysis via LPA1/3. CONCLUSION: These results indicated that hyperglycemia leads to LPA synthesis, and subsequent promoting pathological consequence of PCa. These novel findings could potentially provide new strategies for PCa treatments.


Assuntos
Glucose/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fator C de Crescimento do Endotélio Vascular/metabolismo , Calreticulina/antagonistas & inibidores , Calreticulina/genética , Calreticulina/metabolismo , Linhagem Celular Tumoral , Glicólise , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Lisofosfolipídeos/metabolismo , Masculino , Consumo de Oxigênio/efeitos dos fármacos , Fosfoinositídeo Fosfolipase C/genética , Fosfoinositídeo Fosfolipase C/metabolismo , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Receptores de Ácidos Lisofosfatídicos/genética , Receptores de Ácidos Lisofosfatídicos/metabolismo , Regulação para Cima/efeitos dos fármacos , Fator C de Crescimento do Endotélio Vascular/genética
17.
Lab Chip ; 18(16): 2453-2465, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30019734

RESUMO

Non-planar microstructure-based tissue culture devices have emerged as powerful tools to mimic in vivo physiological microenvironments in a wide range of medical applications. Here we report a spontaneous aqueous molding approach - inspired by Stenocara gracilipes beetles - to rapidly fabricate non-planar microstructure devices for facilitating tissue-based bioassays. The device fabrication is determined from the self-assembled liquid morphology, which is induced by condensation or guided by surface tension. Through experiments and modeling, we reveal that the molding mainly comprises two typical circular and striped domains, highlighting versatile applications for bioengineering. In addition, the molding characteristic is dependent on the geometry of the patterned wetting surfaces, the working volume of the liquid, and the interaction between the liquid and the substrate. The theoretical model, based on the geometry of the patterned liquid, is highly consistent with experimental data. We also demonstrate that our approach can facilitate the culturing of tumor spheroids incorporated with biomimic nano-cilia, rapid high-throughput drug screening, tumor spheroid migration assay, and in vitro modeling of blood vessels. Remarkably, the delivery of multiple concentrations of drugs and their associate mixtures (a total of 25 test spots in one device) can be carried out simultaneously within seconds. Taken together, these insights may offer new opportunities to tailor non-planar microstructures, and our proposed methodology can be applicable for the emerging needs in tumor cell biology and tissue engineering.


Assuntos
Bioensaio/instrumentação , Biomimética/instrumentação , Vasos Sanguíneos/fisiopatologia , Dispositivos Lab-On-A-Chip , Esferoides Celulares , Animais , Vasos Sanguíneos/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Besouros , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/patologia
18.
Radiat Res ; 188(5): 532-551, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28945526

RESUMO

Astronauts traveling to Mars will be exposed to chronic low doses of galactic cosmic space radiation, which contains highly charged, high-energy (HZE) particles. 56Fe-HZE-particle exposure decreases hippocampal dentate gyrus (DG) neurogenesis and disrupts hippocampal function in young adult rodents, raising the possibility of impaired astronaut cognition and risk of mission failure. However, far less is known about how exposure to other HZE particles, such as 28Si, influences hippocampal neurogenesis and function. To compare the influence of 28Si exposure on indices of neurogenesis and hippocampal function with previous studies on 56Fe exposure, 9-week-old C57BL/6J and Nestin-GFP mice (NGFP; made and maintained for 10 or more generations on a C57BL/6J background) received whole-body 28Si-particle-radiation exposure (0, 0.2 and 1 Gy, 300 MeV/n, LET 67 KeV/µ, dose rate 1 Gy/min). For neurogenesis assessment, the NGFP mice were injected with the mitotic marker BrdU at 22 h postirradiation and brains were examined for indices of hippocampal proliferation and neurogenesis, including Ki67+, BrdU+, BrdU+NeuN+ and DCX+ cell numbers at short- and long-term time points (24 h and 3 months postirradiation, respectively). In the short-term group, stereology revealed fewer Ki67+, BrdU+ and DCX+ cells in 1-Gy-irradiated group relative to nonirradiated control mice, fewer Ki67+ and DCX+ cells in 0.2 Gy group relative to control group and fewer BrdU+ and DCX+ cells in 1 Gy group relative to 0.2 Gy group. In contrast to the clearly observed radiation-induced, dose-dependent reductions in the short-term group across all markers, only a few neurogenesis indices were changed in the long-term irradiated groups. Notably, there were fewer surviving BrdU+ cells in the 1 Gy group relative to 0- and 0.2-Gy-irradiated mice in the long-term group. When the short- and long-term groups were analyzed by sex, exposure to radiation had a similar effect on neurogenesis indices in male and female mice, although only male mice showed fewer surviving BrdU+ cells in the long-term group. Fluorescent immunolabeling and confocal phenotypic analysis revealed that most surviving BrdU+ cells in the long-term group expressed the neuronal marker NeuN, definitively confirming that exposure to 1 Gy 28Si radiation decreased the number of surviving adult-generated neurons in male mice relative to both 0- and 0.2-Gy-irradiated mice. For hippocampal function assessment, 9-week-old male C57BL/6J mice received whole-body 28Si-particle exposure and were then assessed long-term for performance on contextual and cued fear conditioning. In the context test the animals that received 0.2 Gy froze less relative to control animals, suggesting decreased hippocampal-dependent function. However, in the cued fear conditioning test, animals that received 1 Gy froze more during the pretone portion of the test, relative to controls and 0.2-Gy-irradiated mice, suggesting enhanced anxiety. Compared to previously reported studies, these data suggest that 28Si-radiation exposure damages neurogenesis, but to a lesser extent than 56Fe radiation and that low-dose 28Si exposure induces abnormalities in hippocampal function, disrupting fear memory but also inducing anxiety-like behavior. Furthermore, exposure to 28Si radiation decreased new neuron survival in long-term male groups but not females suggests that sex may be an important factor when performing brain health risk assessment for astronauts traveling in space.


Assuntos
Condicionamento Psicológico/efeitos da radiação , Giro Denteado/citologia , Medo/psicologia , Neurogênese/efeitos da radiação , Neurônios/citologia , Silício , Irradiação Corporal Total/efeitos adversos , Animais , Comportamento Animal/fisiologia , Comportamento Animal/efeitos da radiação , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Radiação Cósmica , Giro Denteado/fisiologia , Giro Denteado/efeitos da radiação , Relação Dose-Resposta à Radiação , Proteína Duplacortina , Medo/efeitos da radiação , Feminino , Memória/fisiologia , Memória/efeitos da radiação , Camundongos , Neurônios/efeitos da radiação , Fatores de Tempo
19.
Cancer Res ; 77(18): 4745-4754, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28754673

RESUMO

In prostate cancer, androgen deprivation therapy (ADT) enhances the cytotoxic effects of radiotherapy. This effect is associated with weakening of the DNA damage response (DDR) normally supported by the androgen receptor. As a significant number of patients will fail combined ADT and radiotherapy, we hypothesized that DDR may be driven by androgen receptor splice variants (ARV) induced by ADT. Investigating this hypothesis, we found that ARVs increase the clonogenic survival of prostate cancer cells after irradiation in an ADT-independent manner. Notably, prostate cancer cell irradiation triggers binding of ARV to the catalytic subunit of the critical DNA repair kinase DNA-PK. Pharmacologic inhibition of DNA-PKc blocked this interaction, increased DNA damage, and elevated prostate cancer cell death after irradiation. Our findings provide a mechanistic rationale for therapeutic targeting of DNA-PK in the context of combined ADT and radiotherapy as a strategy to radiosensitize clinically localized prostate cancer. Cancer Res; 77(18); 4745-54. ©2017 AACR.


Assuntos
Antagonistas de Androgênios/farmacologia , Reparo do DNA/genética , Proteína Quinase Ativada por DNA/antagonistas & inibidores , Neoplasias da Próstata/genética , Inibidores de Proteínas Quinases/farmacologia , Receptores Androgênicos/genética , Animais , Antineoplásicos/farmacologia , Benzamidas , Reparo do DNA/efeitos da radiação , Proteína Quinase Ativada por DNA/metabolismo , Humanos , Masculino , Camundongos , Camundongos Nus , Nitrilas , Feniltioidantoína/análogos & derivados , Feniltioidantoína/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/radioterapia , Radiação Ionizante , Receptores Androgênicos/química , Receptores Androgênicos/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Sci Rep ; 7(1): 4363, 2017 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-28663555

RESUMO

Biomaterial-based tissue culture platforms have emerged as useful tools to mimic in vivo physiological microenvironments in experimental cell biology and clinical studies. We describe herein a three-dimensional (3D) tissue culture platform using a polydimethylsiloxane (PDMS)-based hanging drop array (PDMS-HDA) methodology. Multicellular spheroids can be achieved within 24 h and further boosted by incorporating collagen fibrils in PDMS-HDA. In addition, the spheroids generated from different human tumor cells exhibited distinct sensitivities toward drug chemotherapeutic agents and radiation as compared with two-dimensional (2D) cultures that often lack in vivo-like biological insights. We also demonstrated that multicellular spheroids may enable key hallmarks of tissue-based bioassays, including drug screening, tumor dissemination, cell co-culture, and tumor invasion. Taken together, these results offer new opportunities not only to achieve the active control of 3D multicellular spheroids on demand, but also to establish a rapid and cost-effective platform to study anti-cancer therapeutics and tumor microenvironments.


Assuntos
Bioensaio/métodos , Técnicas de Cultura de Células , Dimetilpolisiloxanos , Esferoides Celulares , Linhagem Celular Tumoral , Materiais Revestidos Biocompatíveis , Técnicas de Cocultura , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA