Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Biol Interact ; 398: 111074, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38844255

RESUMO

5-Aminosalicylic acid (5-ASA) is a first-line agent in both remission and maintenance therapy for ulcerative colitis (UC). However, the mucosal concentration of 5-ASA was significantly lower in patients with severe histological inflammation, which further led to a poor response to 5-ASA treatment. Our study aimed to clarify the mechanism of 5-ASA uptake into colonic epithelial cells and to further explore the reason for the decreased colonic mucosal 5-ASA concentration in UC patients. Our results demonstrated that the colonic 5-ASA concentration was notably reduced in DSS-induced colitis mice and inversely correlated with colonic inflammation. 5-ASA was not a substrate of carnitine/organic cation transporter 1/2 (OCTN1/2) or multidrug resistance protein 1 (MDR1), whereas organic anion transporting polypeptide 2B1 (OATP2B1) and sodium-coupled monocarboxylate transporter 1 (SMCT1) mediated the uptake of 5-ASA, with a greater contribution from OATP2B1 than SMCT1. Inhibitors and siRNAs targeting OATP2B1 significantly reduced 5-ASA absorption in colonic cell lines. Moreover, OATP2B1 expression was dramatically downregulated in colon tissues from UC patients and dextran sodium sulfate (DSS)-induced colitis mice, and was also negatively correlated with colonic inflammation. Mechanistically, mixed proinflammatory cytokines downregulated the expression of OATP2B1 in a time- and concentration-dependent manner through the hepatocyte nuclear factor 4 α (HNF4α) pathway. In conclusion, OATP2B1 was the pivotal transporter involved in colonic 5-ASA uptake, which indicated that inducing OATP2B1 expression may be a strategy to promote 5-ASA uptake and further improve the concentration and anti-inflammatory efficacy of 5-ASA in UC.

2.
Toxicology ; 503: 153757, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364893

RESUMO

Doxorubicin (DOX) is a widely used antitumor agent; however, its clinical application is limited by dose-related organ damage. Because organic cation/carnitine transporters (OCTN1 and OCTN2), which are critical for DOX uptake, are highly expressed in hepatocytes, we aimed to elucidate the role of these transporters in hepatic DOX uptake. The results indicated that inhibitors and RNA interference both significantly reduced DOX accumulation in HepG2 and HepaRG cells, suggesting that OCTN1/2 contribute substantially to DOX uptake by hepatocytes. To determine whether metformin (MET, an inhibitor of OCTN1 and OCTN2) ameliorates DOX-induced hepatotoxicity, we conducted in vitro and in vivo studies. MET (1-100 µM) inhibited DOX (500 nM) accumulation and cytotoxicity in vitro in a concentration-dependent manner. Furthermore, intravenous MET administration at 250 or 500 mg/kg or by gavage at 50, 100, or 200 mg/kg reduced DOX (8 mg/kg) accumulation in a dose-dependent manner in the mouse liver and attenuated the release of alanine aminotransferase, aspartate aminotransferase, and carboxylesterase 1. Additionally, MET reduced the distribution of DOX in the heart, liver, and kidney and enhanced the urinary elimination of DOX; however, it did not increase the nephric toxicity of DOX. In conclusion, our study demonstrated that MET alleviates DOX hepatotoxicity by inhibiting OCTN1- and OCTN2-mediated DOX uptake in vitro (mouse hepatocytes and HepaRG or HepG2 cells) and in mice.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Metformina , Simportadores , Camundongos , Animais , Proteínas de Transporte de Cátions Orgânicos/genética , Membro 5 da Família 22 de Carreadores de Soluto , Metformina/farmacologia , Doxorrubicina/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle
3.
Chem Biol Interact ; 382: 110627, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37453608

RESUMO

Doxorubicin (DOX) has been widely used to treat various tumors; however, DOX-induced cardiotoxicity limits its utilization. Since high accumulation of DOX in cardiomyocytes/mitochondria is the key reason, we aimed to clarify the mechanisms of DOX uptake and explore whether selectively inhibiting DOX uptake transporters would attenuate DOX accumulation and cardiotoxicity. Our results demonstrated that OCTN1/OCTN2/PMAT (organic cation/carnitine transporter 1/2 or plasma membrane monoamine transporter), especially OCTN2, played crucial roles in DOX uptake in cardiomyocytes, while OCTN2 and OCTN1 contributed to DOX transmembrane transport in mitochondria. Metformin (1-100 µM) concentration-dependently reduced DOX (5 µM for accumulation, 500 nM for cytotoxicity) concentration and toxicity in cardiomyocytes/mitochondria via inhibition of OCTN1-, OCTN2- and PMAT-mediated DOX uptake but did not affect its efflux. Furthermore, metformin (iv: 250 and 500 mg/kg or ig: 50, 100 and 200 mg/kg) could dose-dependently reduce DOX (8 mg/kg) accumulation in mouse myocardium and attenuated its cardiotoxicity. In addition, metformin (1-100 µM) did not impair DOX efficacy in breast cancer or leukemia cells. In conclusion, our study clarified the role of multiple transporters, especially OCTN2, in DOX uptake in cardiomyocytes/mitochondria; metformin alleviated DOX-induced cardiotoxicity without compromising its antitumor efficacy by selective inhibition of multiple transporters mediated DOX accumulation in myocardium/mitochondria.


Assuntos
Metformina , Miócitos Cardíacos , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Membro 5 da Família 22 de Carreadores de Soluto/metabolismo , Doxorrubicina/farmacologia , Mitocôndrias , Metformina/farmacologia , Metformina/metabolismo
4.
Front Microbiol ; 14: 1126808, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37143538

RESUMO

Many lines of evidence demonstrate the associations of colorectal cancer (CRC) with intestinal microbial dysbiosis. Recent reports have suggested that maintaining the homeostasis of microbiota and host might be beneficial to CRC patients, but the underlying mechanisms remain unclear. In this study, we established a CRC mouse model of microbial dysbiosis and evaluated the effects of fecal microbiota transplantation (FMT) on CRC progression. Azomethane and dextran sodium sulfate were used to induce CRC and microbial dysbiosis in mice. Intestinal microbes from healthy mice were transferred to CRC mice by enema. The vastly disordered gut microbiota of CRC mice was largely reversed by FMT. Intestinal microbiota from normal mice effectively suppressed cancer progression as assessed by measuring the diameter and number of cancerous foci and significantly prolonged survival of the CRC mice. In the intestine of mice that had received FMT, there were massive infiltration of immune cells, including CD8+ T and CD49b+ NK, which is able to directly kill cancer cells. Moreover, the accumulation of immunosuppressive cells, Foxp3+ Treg cells, seen in the CRC mice was much reduced after FMT. Additionally, FMT regulated the expressions of inflammatory cytokines in CRC mice, including down-regulation of IL1a, IL6, IL12a, IL12b, IL17a, and elevation of IL10. These cytokines were positively correlated with Azospirillum_sp._47_25, Clostridium_sensu_stricto_1, the E. coli complex, Akkermansia, Turicibacter, and negatively correlated with Muribaculum, Anaeroplasma, Candidatus_Arthromitus, and Candidatus Saccharimonas. Furthermore, the repressed expressions of TGFb, STAT3 and elevated expressions of TNFa, IFNg, CXCR4 together promoted the anti-cancer efficacy. Their expressions were positively correlated with Odoribacter, Lachnospiraceae-UCG-006, Desulfovibrio, and negatively correlated with Alloprevotella, Ruminococcaceae UCG-014, Ruminiclostridium, Prevotellaceae UCG-001 and Oscillibacter. Our studies indicate that FMT inhibits the development of CRC by reversing gut microbial disorder, ameliorating excessive intestinal inflammation and cooperating with anti-cancer immune responses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA