Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Taiwan Inst Chem Eng ; 147: 104898, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37193294

RESUMO

Background: Jing Guan Fang (JGF) is an anti-COVID-19 Chinese Medicine decoction comprised of five medicinal herbs to possess anti-inflammatory and antiviral properties for treatment. This study aims to electrochemically decipher the anti-coronavirus activity of JGF and show that microbial fuel cells may serve as a platform for screening efficacious herbal medicines and providing scientific bases for the mechanism of action (MOA) of TCMs. Methods: Electrochemical techniques (e.g., cyclic voltammetry) and MFCs were adopted as the bioenergy-based platforms to assess the bioenergy-stimulating characteristics of JGF. Phytochemical analysis correlated polyphenolic and flavonoid content with antioxidant activity and bioenergy-stimulating properties. Network pharmacology on the active compounds was employed to identify anti-inflammatory and anti-COVID-19 protein targets, and molecular docking validated in silico results. Significant findings: This first-attempt results show that JGF possesses significant reversible bioenergy-stimulation (amplification 2.02 ± 0.04) properties suggesting that its antiviral efficacy is both bioenergy-steered and electron mediated. Major flavonoids and flavone glycosides identified by HPLC (e.g., baicalein and baicalin, respectively) possess electron-shuttling (ES) characteristics that allow herbal medicines to treat COVID-19 via (1) reversible scavenging of ROS to lessen inflammation; (2) inhibition of viral proteins; and (3) targeting of immunomodulatory pathways to stimulate the immune response according to network pharmacology.

2.
J Taiwan Inst Chem Eng ; 145: 104838, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37051508

RESUMO

Background: Traditional herbal medicines usually contain electron shuttle (ES)-like structures compounds which are potential candidates for antiviral compounds selection. Houttuynia cordata is applied as a biomaterial to decipher its potential applications in bioenergy extraction in microbial fuel cells (MFCs) and anti-COVID-19 via molecular docking evaluation. Methods: H. cordata leaves extracts by water and 60% ethanol solvent were analyzed for total polyphenols, antioxidant activity, cyclic voltammetry (CV), and MFCs. The bioactive compounds of H. cordata leaves extracts were assayed via LC/MS analysis. Identification of the marker substances for potential antiviral activity using a molecular docking model was provided. Significant findings: 60% ethanol extract exhibits the highest total polyphenols and antioxidant activity compared with water extracts. Bioenergy extraction in MFCs showed that 60% ethanol extracts could give 1.76-fold more power generation compared to the blank. Flavonoids and their sugar-to-glycan ratios increased after CV scanning and they are expected to be effective ES substances. Quercitrin, from the H. cordata extract that shares an ES-like structure, was found to exhibit strong binding affinities towards ACE2 and RdRp. This indicated the potential of H. cordata leaves as a promising antiviral herb.

3.
J Taiwan Inst Chem Eng ; 135: 104365, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35578714

RESUMO

Background: Traditional Chinese medicine (TCM) has been used as an "immune booster" for disease prevention and clinical treatment since ancient China. However, many studies were focused on the organic herbal extract rather than aqueous herbal extract (AHE; decoction). Due to the COVID-19 pandemics, this study tended to decipher phytochemical contents in the decoction of herbs and derived bioactivities (e.g., anti-oxidant and anti-inflammatory properties). As prior works revealed, the efficacy of Parkinson's medicines and antiviral flavonoid herbs was strongly governed by their bioenergy-stimulating proficiency. Methods: Herbal extracts were prepared by using a traditional Chinese decoction pot. After filtration and evaporation, crude extracts were used to prepare sample solutions for various bioassays. The phytochemical content and bioactivities of AHEs were determined via ELISA microplate reader. Microbial fuel cells (MFCs) were used as a novel platform to evaluate bioenergy contents with electron-transfer characteristics for antiviral drug development. Significant findings: Regarding 18 TCM herbal extracts for the prevention of SARS and H1N1 influenza, comparison on total polyphenol, flavonoid, condensed tannins and polysaccharides were conducted. Moreover, considerable total flavonoid contents were detected for 11 herb extracts. These AEHs were not only rich in phytonutrient contents but also plentiful in anti-oxidant and anti-inflammatory activities. Herbs with high polyphenol content had higher antioxidant activity. Forsythia suspensa extract expressed the highest inhibition against nitric oxide production for anti-inflammation. MFC bioenergy-stimulating studies also revealed that top ranking COVID-19 efficacious herbs were both bioenergy driven and electron mediated. That is, electron transfer-controlled bioenergy extraction was significant to antiviral characteristics for anti-COVID-19 drug development.

4.
J Taiwan Inst Chem Eng ; 113: 214-222, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32904523

RESUMO

This first-attempt study deciphered combined characteristics of species evolution and bioelectricity generation of microbial community in microbial fuel cells (MFCs) supplemented with Camellia green tea (GT) extracts for biomass energy extraction. Prior studies indicated that polyphenols-rich extracts as effective redox mediators (RMs) could exhibit significant electrochemical activities to enhance power generation in MFCs. However, the supplementation of Camellia GT extract obtained at room temperature with significant redox capabilities into MFCs unexpectedly exhibited obvious inhibitory effect towards power generation. This systematic study indicated that the presence of antimicrobial components (especially catechins) in GT extract might significantly alter the distribution of microbial community, in particular a decrease of microbial diversity and evenness. For practical applications to different microbial systems, pre-screening criteria of selecting biocompatible RMs should not only consider their promising redox capabilities (abiotic), but also possible inhibitory potency (biotic) to receptor microbes. Although Camellia tea extract was well-characterized as GRAS energy drink, some contents (e.g., catechins) may still express inhibition towards organisms and further assessment upon biotoxicity may be inevitably required for practice.

5.
Biotechnol Biofuels ; 12: 271, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31832094

RESUMO

For renewable and sustainable bioenergy utilization with cost-effectiveness, electron-shuttles (ESs) (or redox mediators (RMs)) act as electrochemical "catalysts" to enhance rates of redox reactions, catalytically accelerating electron transport efficiency for abiotic and biotic electrochemical reactions. ESs are popularly used in cellular respiratory systems, metabolisms in organisms, and widely applied to support global lives. Apparently, they are applicable to increase power-generating capabilities for energy utilization and/or fuel storage (i.e., dye-sensitized solar cell, batteries, and microbial fuel cells (MFCs)). This first-attempt review specifically deciphers the chemical structure association with characteristics of ESs, and discloses redox-mediating potentials of polyphenolics-abundant ESs via MFC modules. Moreover, to effectively convert electron-shuttling capabilities from non-sustainable antioxidant activities, environmental conditions to induce electrochemical mediation apparently play critical roles of great significance for bioenergy stimulation. For example, pH levels would significantly affect electrochemical potentials to be exhibited (e.g., alkaline pHs are electrochemically favorable for expression of such electron-shuttling characteristics). Regarding chemical structure effect, chemicals with ortho- and para-dihydroxyl substituents-bearing aromatics own convertible characteristics of non-renewable antioxidants and electrochemically catalytic ESs; however, ES capabilities of meta-dihydroxyl substituents can be evidently repressed due to lack of resonance effect in the structure for intermediate radical(s) during redox reaction. Moreover, this review provides conclusive remarks to elucidate the promising feasibility to identify whether such characteristics are non-renewable antioxidants or reversible ESs from natural polyphenols via cyclic voltammetry and MFC evaluation. Evidently, considering sustainable development, such electrochemically convertible polyphenolic species in plant extracts can be reversibly expressed for bioenergy-stimulating capabilities in MFCs under electrochemically favorable conditions.

6.
Biotechnol Biofuels ; 12: 46, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30867679

RESUMO

BACKGROUND: Microbial fuel cells (MFCs) are effective biofuel devices that use indigenous microbes to directly convert chemical energy from organics oxidation into bioelectric energy. To maximize energy-converting efficiency for bioelectricity generation in MFCs, redox mediators (RMs) (e.g., extracts obtained from plant resource-Camellia green tea) have been explored for optimal stimulation upon electron transfer (ET) capabilities. Anthocyanins are natural antioxidants widely used in food science and medicinal industry. This first-attempt study revealed optimal strategies to augment extracts of anthocyanin-rich herbs (Lycium ruthenicum Murr., Clitoria ternatea Linn. and Vaccinium Spp.) as biofuel sources of catalytic RMs for stimulating bioenergy extraction in MFCs. RESULTS: This work showed that extracts of anthocyanin-rich herbs were promising electroactive RMs. The maximal power density of MFCs supplemented with extract of L. ruthenicum Murr. was achieved, suggesting that extract of L. ruthenicum Murr. would be the most electrochemically appropriate RMs. Compared to C. ternatea Linn. and Vaccinium Spp., L. ruthenicum Murr. evidently owned the most significant redox-mediating capability to stimulate bioenergy extraction likely due to significantly high contents of polyphenols (e.g., anthocyanin). Evidently, increases in adenosine triphosphate (ATP) content directly responded to supplementation of anthocyanin-rich herbal extracts. It strongly suggested that the electron-shuttling characteristics of RMs upon electroactive microorganisms could effectively promote the electron transfer capability to maximize bioenergy extraction in MFCs. CONCLUSION: Anthocyanin as the main water-soluble vacuolar pigments in plant products were very electroactive for not only excellent antioxidant activities, but also promising electron-shuttling capabilities for renewable biofuel applications. This work also suggested the electron-shuttling mechanism of RMs that could possibly promote electron transport phenomena through microbial cell membrane, further influencing the electron transport chain for efficient bioenergy generation.

7.
Bioresour Technol ; 256: 95-101, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29433051

RESUMO

This first-attempt study used extracts of appropriate antioxidant abundant Camellia and non-Camellia tea and medicinal herbs as model ESs to stably intensify bioelectricity generation performance in microbial fuel cells (MFCs). As electron shuttles (ESs) could stimulate electron transport phenomena by significant reduction of electron transfer resistance, the efficiency of power generation for energy extraction in microbial fuel cells (MFCs) could be appreciably augmented. Using environmentally friendly natural bioresource as green bioresource of ESs is the most promising to sustainable practicability. As comparison of power-density profiles indicated, supplement of Camellia tea extracts would be the most appropriate, then followed non-Camellia Chrysanthemum tea and medicinal herbs. Antioxidant activities, total phenolic contents and power stimulating activities were all electrochemically associated. In particular, the extract of unfermented Camellia tea (i.e., green tea) was the most promising ESs to augment bioenergy extraction compared to other refreshing medicinal herb extracts.


Assuntos
Fontes de Energia Bioelétrica , Plantas Medicinais , Chá , Antioxidantes , Camellia sinensis , Fenóis , Extratos Vegetais
8.
Bioresour Technol ; 160: 175-81, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24581862

RESUMO

A continuous fixed-bed biosorption process was established for cadmium (Cd) removal by Scenedesmus obliquus CNW-N (isolated from southern Taiwan) cells immobilized onto loofa sponge. This immobilized-cell biosorption process allows better recovery and reusability of the microalgal biomass. The growth of microalgae on the matrix support with appropriate nutrient supplementation could enhance the overall metal removal activity. Major operating parameters (e.g., feeding flow rate, cycle number of medium replacement, and particle diameter of the sponge) were studied for treatability evaluation. The most promising cell growth on the sponge support was obtained at a flow rate of 0.284 bed volume (BV)/min, sponge particle diameter of 1 cm, and with one cycle of medium replacement. The performance of fixed-bed biosorption (adsorption capacity of 38.4 mg, breakthrough time at 15.5 h) was achieved at a flow rate of 5 ml/min with an influent concentration of 7.5 mg Cd/l.


Assuntos
Cádmio/isolamento & purificação , Luffa/química , Scenedesmus/citologia , Scenedesmus/metabolismo , Adsorção , Processos Autotróficos/efeitos dos fármacos , Biodegradação Ambiental/efeitos dos fármacos , Biomassa , Carbono/farmacologia , Dióxido de Carbono/farmacologia , Células Imobilizadas/citologia , Células Imobilizadas/efeitos dos fármacos , Células Imobilizadas/metabolismo , Microalgas/citologia , Microalgas/efeitos dos fármacos , Microalgas/crescimento & desenvolvimento , Reologia/efeitos dos fármacos , Scenedesmus/efeitos dos fármacos , Scenedesmus/crescimento & desenvolvimento
9.
Bioresour Technol ; 101(8): 2651-6, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19944603

RESUMO

This study provides a first attempt to explore indigenous strains with excellent decolorization capability from the most biodiverse region in Taiwan for dye-bearing wastewater treatment. Bacterial isolates were obtained via serial selections under selection pressure of the fungicide nystatin and model textile dye(s). According to profiles of protein expression and PCR-augmented 16S rRNA gene analyses for strain identification, >99% of nucleotide sequences in isolated strains were identical to type strains Aeromonas hydrophila, Klebsiella pneumoniae, Enterobacter cancerogenus, Proteus hauseri, Acinetobacter johnsonii. This first-attempt study not only explored most abundant decolorizers in Taiwan, but also compared their color removal performance for further applications.


Assuntos
Compostos Azo/metabolismo , Bactérias/metabolismo , Reatores Biológicos , Corantes/metabolismo , Filogenia , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos , Bactérias/genética , Sequência de Bases , Biodegradação Ambiental , Centrifugação , Análise por Conglomerados , Cor , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiologia do Solo , Espectrofotometria Ultravioleta , Taiwan , Microbiologia da Água
10.
Chemosphere ; 55(5): 751-6, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15013680

RESUMO

The study provides novel attempt to use an aerobic biofiltration system containing entrapped mixed microbial cells (EMMC) for removal of (CH3)3N-dominant waste gases. In the study, heterotrophic microflora-immobilized cellulose was packed into an EMMC reactor to degrade (CH3)3N. Effects of (CH3)3N inlet concentrations in continuous mode of operation at various flow rates are indicated. The result indicated that the (CH3)3N removal efficiency is higher than 90% at inlet loading below 27.2 mgNh(-1) and retention time 5.3 min. In addition, the maximal mass loading to reach approximately 99% efficiency was 95.5 mgNh(-1) for trimethylamine treatment. This EMMC biofiltration system also showed higher tolerance to endure fluctuations in concentrations and flow rates and still maintained in stable performance for removal. Adaptability test in response to gradual shift up and down of inlet TMA loading indicated that lack of steady-state multiplicity and hysteresis guarantees the microbial communities more precisely adapted to continuous treatment for maintaining stability.


Assuntos
Bactérias/metabolismo , Filtração/métodos , Metilaminas/metabolismo , Resíduos , Cromatografia Gasosa , Filtração/instrumentação , Cinética , Esgotos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA