Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biol Psychiatry ; 95(1): 15-26, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37423591

RESUMO

BACKGROUND: Traumatic brain injury (TBI) is a debilitating neurological disorder caused by an impact to the head by an outside force. TBI results in persistent cognitive impairments, including fear generalization and the inability to distinguish between aversive and neutral stimuli. The mechanisms underlying fear generalization have not been fully elucidated, and there are no targeted therapeutics to alleviate this symptom of TBI. METHODS: To identify the neural ensembles mediating fear generalization, we utilized ArcCreERT2 × enhanced yellow fluorescent protein (EYFP) mice, which allow for activity-dependent labeling and quantification of memory traces. Mice were administered a sham surgery or the controlled cortical impact model of TBI. Mice were then administered a contextual fear discrimination paradigm and memory traces were quantified in numerous brain regions. In a separate group of mice, we tested if (R,S)-ketamine could decrease fear generalization and alter the corresponding memory traces in TBI mice. RESULTS: TBI mice exhibited increased fear generalization when compared with sham mice. This behavioral phenotype was paralleled by altered memory traces in the dentate gyrus, CA3, and amygdala, but not by alterations in inflammation or sleep. In TBI mice, (R,S)-ketamine facilitated fear discrimination, and this behavioral improvement was reflected in dentate gyrus memory trace activity. CONCLUSIONS: These data show that TBI induces fear generalization by altering fear memory traces and that this deficit can be improved with a single injection of (R,S)-ketamine. This work enhances our understanding of the neural basis of TBI-induced fear generalization and reveals potential therapeutic avenues for alleviating this symptom.


Assuntos
Lesões Encefálicas Traumáticas , Ketamina , Camundongos , Animais , Ketamina/farmacologia , Hipocampo/metabolismo , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Medo , Encéfalo , Camundongos Endogâmicos C57BL
2.
Neurobiol Learn Mem ; 203: 107792, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37369343

RESUMO

Pituitary adenylate cyclase-activating peptide (PACAP) is a highly conserved and widely expressed neuropeptide that has emerged as a key regulator of multiple neural and behavioral processes. PACAP systems, including the various PACAP receptor subtypes, have been implicated in neural circuits of learning and memory, stress, emotion, feeding, and pain. Dysregulation within these PACAP systems may play key roles in the etiology of pathological states associated with these circuits, and PACAP function has been implicated in stress-related psychopathology, feeding and metabolic disorders, and migraine. Accordingly, central PACAP systems may represent important therapeutic targets; however, substantial heterogeneity in PACAP systems related to the distribution of multiple PACAP isoforms across multiple brain regions, as well as multiple receptor subtypes with several isoforms, signaling pathways, and brain distributions, provides both challenges and opportunities for the development of new clinically-relevant strategies to target the PACAP system in health and disease. Here we review the heterogeneity of central PACAP systems, as well as the data implicating PACAP systems in clinically-relevant behavioral processes, with a particular focus on the considerable evidence implicating a role of PACAP in stress responding and learning and memory. We also review data suggesting that there are sex differences in PACAP function and its interactions with sex hormones. Finally, we discuss both the challenges and promise of harnessing the PACAP system in the development of new therapeutic avenues and highlight PACAP systems for their critical role in health and disease.


Assuntos
Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Feminino , Humanos , Masculino , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Aprendizagem , Emoções , Transdução de Sinais/fisiologia
3.
bioRxiv ; 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36909465

RESUMO

INTRODUCTION: Traumatic brain injury (TBI) is a debilitating neurological disorder caused by an impact to the head by an outside force. TBI results in persistent cognitive impairments, including fear generalization, the inability to distinguish between aversive and neutral stimuli. The mechanisms underlying fear generalization have not been fully elucidated, and there are no targeted therapeutics to alleviate this symptom of TBI. METHODS: To identify the neural ensembles mediating fear generalization, we utilized the ArcCreER T2 x enhanced yellow fluorescent protein (EYFP) mice, which allow for activity-dependent labeling and quantification of memory traces. Mice were administered a sham surgery or the controlled cortical impact (CCI) model of TBI. Mice were then administered a contextual fear discrimination (CFD) paradigm and memory traces were quantified in numerous brain regions. In a separate group of mice, we tested if ( R,S )-ketamine could decrease fear generalization and alter the corresponding memory traces in TBI mice. RESULTS: TBI mice exhibited increased fear generalization when compared with sham mice. This behavioral phenotype was paralleled by altered memory traces in the DG, CA3, and amygdala, but not by alterations in inflammation or sleep. In TBI mice, ( R,S )-ketamine facilitated fear discrimination and this behavioral improvement was reflected in DG memory trace activity. CONCLUSIONS: These data show that TBI induces fear generalization by altering fear memory traces, and that this deficit can be improved with a single injection of ( R,S )-ketamine. This work enhances our understanding of the neural basis of TBI-induced fear generalization and reveals potential therapeutic avenues for alleviating this symptom.

4.
Neuropsychopharmacology ; 46(5): 882-890, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32919399

RESUMO

In the United States, ~1.4 million individuals identify as transgender. Many transgender adolescents experience gender dysphoria related to incongruence between their gender identity and sex assigned at birth. This dysphoria may worsen as puberty progresses. Puberty suppression by gonadotropin-releasing hormone agonists (GnRHa), such as leuprolide, can help alleviate gender dysphoria and provide additional time before irreversible changes in secondary sex characteristics may be initiated through feminizing or masculinizing hormone therapy congruent with the adolescent's gender experience. However, the effects of GnRH agonists on brain function and mental health are not well understood. Here, we investigated the effects of leuprolide on reproductive function, social and affective behavior, cognition, and brain activity in a rodent model. Six-week-old male and female C57BL/6J mice were injected daily with saline or leuprolide (20 µg) for 6 weeks and tested in several behavioral assays. We found that leuprolide increases hyperlocomotion, changes social preference, and increases neuroendocrine stress responses in male mice, while the same treatment increases hyponeophagia and despair-like behavior in females. Neuronal hyperactivity was found in the dentate gyrus (DG) of leuprolide-treated females, but not males, consistent with the elevation in hyponeophagia and despair-like behavior in females. These data show for the first time that GnRH agonist treatment after puberty onset exerts sex-specific effects on social- and affective behavior, stress regulation, and neural activity. Investigating the behavioral and neurobiological effects of GnRH agonists in mice will be important to better guide the investigation of potential consequences of this treatment for youth experiencing gender dysphoria.


Assuntos
Pessoas Transgênero , Adolescente , Animais , Feminino , Identidade de Gênero , Hormônio Liberador de Gonadotropina , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Puberdade , Estados Unidos
5.
Neuropsychopharmacology ; 45(9): 1545-1556, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32417852

RESUMO

Enhancing stress resilience in at-risk populations could significantly reduce the incidence of stress-related psychiatric disorders. We have previously reported that the administration of (R,S)-ketamine prevents stress-induced depressive-like behavior in male mice, perhaps by altering α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated transmission in hippocampal CA3. However, it is still unknown whether metabolites of (R,S)-ketamine can be prophylactic in both sexes. We administered (R,S)-ketamine or its metabolites (2R,6R)-hydroxynorketamine ((2R,6R)-HNK) and (2S,6S)-hydroxynorketamine ((2S,6S)-HNK) at various doses 1 week before one of a number of stressors in male and female 129S6/SvEv mice. Patch clamp electrophysiology was used to determine the effect of prophylactic drug administration on glutamatergic activity in CA3. To examine the interaction between ovarian hormones and stress resilience, female mice also underwent ovariectomy (OVX) surgery and a hormone replacement protocol prior to drug administration. (2S,6S)-HNK and (2R,6R)-HNK protected against distinct stress-induced behaviors in both sexes, with (2S,6S)-HNK attenuating learned fear in male mice, and (2R,6R)-HNK preventing stress-induced depressive-like behavior in both sexes. (R,S)-ketamine and (2R,6R)-HNK, but not (2S,6S)-HNK, attenuated large-amplitude AMPAR-mediated bursts in hippocampal CA3. All three compounds reduced N-methyl-D-aspartate receptor (NMDAR)-mediated currents 1 week after administration. Furthermore, ovarian-derived hormones were necessary for and sufficient to restore (R,S)-ketamine- and (2R,6R)-HNK-mediated prophylaxis in female mice. Our data provide further evidence that resilience-enhancing prophylactics may alter AMPAR-mediated glutamatergic transmission in CA3. Moreover, we show that prophylactics against stress-induced depressive-like behavior can be developed in a sex-specific manner and demonstrate that ovarian hormones are necessary for the prophylactic efficacy of (R,S)-ketamine and (2R,6R)-HNK in female mice.


Assuntos
Ketamina , Animais , Fenômenos Eletrofisiológicos , Feminino , Hipocampo/metabolismo , Ketamina/análogos & derivados , Ketamina/farmacologia , Masculino , Camundongos , Receptores de N-Metil-D-Aspartato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA