Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biofouling ; 40(9): 538-548, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39212053

RESUMO

To improve the durability of the photobioreactor antibiofouling surface for microalgal cultivation, a series of photoreactive poly(2,2,2-trifluoroethyl methacrylate) (PTFEMA) were successfully synthesized and used to modify ethylene-vinyl acetate (EVA) films by a surface coating and UV light grafting method. Fourier transform infrared (FT-IR) spectra, X-ray photoelectron spectroscopy analysis (XPS) and fluorescence microscopy results indicated that PTFEMA were fixed successfully onto the EVA film surface through a covalent bond. During the microalgal adhesion assay, the number of EVA-PTFEMA film-adhered microalgae was 41.4% lower than that of the EVA film. Moreover, the number of microalgae attached to the EVA-PTFEMA film decreased by 61.7% after cleaning, while that of EVA film decreased by only 49.1%. It was found that the contact angle of EVA-PTFEMA film surface increased, and remained stable when immersed in acid and alkali solution for up to 90 days.HIGHLIGHTSDurable photobioreactor antibiofouling surfaces for microalgal cultivation were prepared successfully.The contact angle of antibiofouling coating surface remained stable in acid and base environment for 90 days.The attached microalgae on antibiofouling surface decreased 41.4% than those of unmodified surface.The attached microalgae on antibiofouling surface could be cleaned by 61.7% through changing the flow velocity of microalgal suspension.


Assuntos
Incrustação Biológica , Microalgas , Fotobiorreatores , Propriedades de Superfície , Microalgas/crescimento & desenvolvimento , Incrustação Biológica/prevenção & controle , Metacrilatos/farmacologia , Espectroscopia Fotoeletrônica , Raios Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Acta Biomater ; 159: 111-127, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36736645

RESUMO

Persistent oxidative stress and recurring waves of inflammation with excessive reactive oxygen species (ROS) and free radical accumulation could be generated by radiation. Exposure to radiation in combination with physical injuries such as wound trauma would produce a more harmful set of medical complications, which was known as radiation combined with skin wounds (RCSWs). However, little attention has been given to RCSW research despite the unsatisfactory therapeutic outcomes. In this study, a dual-nanoagent-loaded multifunctional hydrogel was fabricated to ameliorate the pathological microenvironment associated with RCSWs. The injectable, adhesive, and self-healing hydrogel was prepared by crosslinking carbohydrazide-modified gelatin (Gel-CDH) and oxidized hyaluronic acid (OHA) through the Schiff-base reaction under mild condition. Polydopamine nanoparticles (PDA-NPs) and mesenchymal stem cell-secreted small extracellular vesicles (MSC-sEV) were loaded to relieve radiation-produced tissue inflammation and oxidation impairment and enhance cell vitality and angiogenesis individually or jointly. The proposed PDA-NPs@MSC-sEV hydrogel enhanced cell vitality, as shown by cell proliferation, migration, colony formation, and cell cycle and apoptosis assays in vitro, and promoted reepithelization by attenuating microenvironment pathology in vivo. Notably, a gene set enrichment analysis of proteomic data revealed significant enrichment with adipogenic and hypoxic pathways, which play prominent roles in wound repair. Specifically, target genes were predicted based on differential transcription factor expression. The results suggested that MSC-sEV- and PDA-NP-loaded multifunctional hydrogels may be promising nanotherapies for RCSWs. STATEMENT OF SIGNIFICANCE: The small extracellular vesicle (sEV) has distinct advantages compared with MSCs, and polydopamine nanoparticles (PDA-NPs), known as the biological materials with good cell affinity and histocompatibility which have been reported to scavenge ROS free radicals. In this study, an adhesive, injectable, self-healing, antibacterial, ROS scavenging and amelioration of the radiation related microenvironment hydrogel encapsulating nanoscale particles of MSC-sEV and PDA-NPs (PDA-NPs@MSC-sEV hydrogel) was synthesized for promoting radiation combined with skin wounds (RCSWs). GSEA analysis profiled by proteomics data revealed significant enrichments in the regulations of adipogenic and hypoxic pathways with this multi-functional hydrogel. This is the first report of combining this two promising nanoscale agents for the special skin wounds associated with radiation.


Assuntos
Hidrogéis , Proteômica , Humanos , Cicatrização , Antibacterianos , Inflamação
3.
Adv Sci (Weinh) ; 10(4): e2204786, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36504438

RESUMO

The highly heterogeneous characteristics of Wharton's jelly mesenchymal stem cells (WJ-MSCs) may be responsible for the poor clinical outcomes and poor reproducibility of treatments based on WJ-MSCs. Exploration of WJ-MSC heterogeneity with multimodal single-cell technologies will aid in establishing accurate MSC subtyping and developing screening protocols for dominant functional subpopulations. Here, the characteristics of WJ-MSCs are systematically analyzed by single cell and spatial transcriptome sequencing. Single-cell transcriptomics analysis identifies four WJ-MSC subpopulations, namely proliferative_MSCs, niche-supporting_MSCs, metabolism-related_MSCs and biofunctional-type_MSCs. Furthermore, the transcriptome, cellular heterogeneity, and cell-state trajectories of these subpopulations are characterized. Intriguingly, the biofunctional-type MSCs (marked by S100A9, CD29, and CD142) selected in this study exhibit promising wound repair properties in vitro and in vivo. Finally, by integrating omics data, it has been found that the S100A9+ CD29+ CD142+ subpopulation is more enriched in the fetal segment of the umbilical cord, suggesting that this subpopulation deriving from the fetal segment may have potential for developing into an ideal therapeutic agent for wound healing. Overall, the presented study comprehensively maps the heterogeneity of WJ-MSCs and provides an essential resource for future development of WJ-MSC-based drugs.


Assuntos
Células-Tronco Mesenquimais , Geleia de Wharton , Diferenciação Celular , Transcriptoma/genética , Reprodutibilidade dos Testes , Cicatrização/genética
4.
Int J Pharm ; 623: 121952, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35753534

RESUMO

The main strategy of tissue repair and regeneration focuses on the application of mesenchymal stem cells and cell-based nanoparticles, but there are still multiple challenges that may have negative impacts on human safety and therapeutic efficacy. Cell-free nanotechnology can effectively overcome these obstacles and limitations. Mesenchymal stem cell (MSC)-derived natural small extracellular vesicles (sEVs) represent ideal nanotherapeutics due to their low immunogenicity and lack of tumorigenicity. Here, sEVs harvested from Wharton's jelly mesenchymal stem cells (WJMSCs) were identified. In vitro results showed that WJMSC-sEVs efficiently entered chondrocytes in the osteoarthritis (OA) model, further promoted chondrocyte migration and proliferation and modulated immune reactivity. In vivo, WJMSC-sEVs notably promoted chondrogenesis, which was consistent with the effect of WJMSCs. RNA sequencing results revealed that sEV-microRNA-regulated biocircuits can significantly contribute to the treatment of OA, such as by promoting the activation of the calcium signaling pathway, ECM-receptor interaction pathway and NOTCH signaling pathway. In particular, let-7e-5p, which is found in WJMSC-sEVs, was shown to be a potential core molecule for promoting cartilage regeneration by regulating the levels of STAT3 and IGF1R. Our findings suggest that WJMSC-sEV-induced chondrogenesis is a promising innovative and feasible cell-free nanotherapy for OA treatment.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , MicroRNAs , Nanopartículas , Geleia de Wharton , Cartilagem , Humanos , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo
5.
Int J Nanomedicine ; 16: 8185-8202, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938076

RESUMO

INTRODUCTION: Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) and their small extracellular vesicles (hUC-MSC-sEVs) have shown attractive prospects applying in regenerative medicine. This study aimed to compare the therapeutic effects of two agents on osteoarthritis (OA) and investigate underlying mechanism using proteomics. METHODS: In vitro, the proliferation and migration abilities of chondrocytes treated with hUC-MSCs or hUC-MSC-sEVs were detected by Cell Counting Kit-8 assay and scratch wound assay. In vivo, hUC-MSCs (a single dose of 5 × 105) or hUC-MSC-sEVs (30 µg/time) were injected into the knee joints of anterior cruciate ligament transection-induced OA model. Hematoxylin and eosin, Safranin O/Fast Green staining were used to observe cartilage degeneration. The levels of cartilage matrix metabolic molecules (Collagen II, MMP13 and ADAMTS5) and macrophage polarization markers (CD14, IL-1ß, IL-10 and CD206) were assessed by immunohistochemistry. Finally, proteomics analysis was performed to characterize the proteinaceous contents of two agents. RESULTS: In vitro data showed that hUC-MSC-sEVs were taken up by chondrocytes. A total of 15 µg/mL of sEVs show the greatest proliferative and migratory capacities among all groups. In the animal study, hUC-MSCs and hUC-MSC-sEVs alleviated cartilage damage. This effect was mediated via maintaining cartilage homeostasis, as was confirmed by upregulation of the COL II and downregulation of the MMP13 and ADAMTS5. Moreover, the M1 macrophage markers (CD14) were significantly reduced, while the M2 macrophage markers (CD206 and IL-10) were increased in the hUC-MSCs and hUC-MSC-sEVs relative to the untreated group. Mechanistically, we found that many proteins connected to cartilage repair were more abundant in sEVs. Notably, compared to hUC-MSCs, the upregulated proteins in sEVs were mostly involved in the regulation of immune effector process, extracellular matrix organization, PI3K-AKT signaling pathways, and Rap1 signaling pathway. CONCLUSION: Our study indicated that hUC-MSC-sEVs protect cartilage from damage and many cartilage repair-related proteins are probably involved in the restoration process. These data suggest the promising potential of hUC-MSC-sEVs as a therapeutic agent for OA.


Assuntos
Vesículas Extracelulares , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Osteoartrite , Animais , Humanos , Osteoartrite/terapia , Fosfatidilinositol 3-Quinases , Cordão Umbilical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA