Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Elife ; 132024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995840

RESUMO

Aberrant alternative splicing is well-known to be closely associated with tumorigenesis of various cancers. However, the intricate mechanisms underlying breast cancer metastasis driven by deregulated splicing events remain largely unexplored. Here, we unveiled that RBM7 is decreased in lymph node and distant organ metastases of breast cancer as compared to primary lesions and low expression of RBM7 is correlated with the reduced disease-free survival of breast cancer patients. Breast cancer cells with RBM7 depletion exhibited an increased potential for lung metastasis compared to scramble control cells. The absence of RBM7 stimulated breast cancer cell migration, invasion, and angiogenesis. Mechanistically, RBM7 controlled the splicing switch of MFGE8, favoring the production of the predominant isoform of MFGE8, MFGE8-L. This resulted in the attenuation of STAT1 phosphorylation and alterations in cell adhesion molecules. MFGE8-L exerted an inhibitory effect on the migratory and invasive capability of breast cancer cells, while the truncated isoform MFGE8-S, which lack the second F5/8 type C domain had the opposite effect. In addition, RBM7 negatively regulates the NF-κB cascade and an NF-κB inhibitor could obstruct the increase in HUVEC tube formation caused by RBM7 silencing. Clinically, we noticed a positive correlation between RBM7 expression and MFGE8 exon7 inclusion in breast cancer tissues, providing new mechanistic insights for molecular-targeted therapy in combating breast cancer.


Assuntos
Neoplasias da Mama , NF-kappa B , Proteínas de Ligação a RNA , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Feminino , NF-kappa B/metabolismo , Movimento Celular/genética , Linhagem Celular Tumoral , Processamento Alternativo , Metástase Neoplásica , Transdução de Sinais , Animais , Regulação Neoplásica da Expressão Gênica , Camundongos
2.
Cell Death Discov ; 10(1): 249, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782895

RESUMO

Multiple gene abnormalities are major drivers of tumorigenesis. NF-κB p65 overactivation and cGAS silencing are important triggers and genetic defects that accelerate tumorigenesis. However, the simultaneous correction of NF-κB p65 and cGAS abnormalities remains to be further explored. Here, we propose a novel Induced Dual-Target Rebalance (IDTR) strategy for simultaneously correcting defects in cGAS and NF-κB p65. By using our IDTR approach, we showed for the first time that oncolytic adenovirus H101 could reactivate silenced cGAS, while silencing GAU1 long noncoding RNA (lncRNA) inhibited NF-κB p65 overactivation, resulting in efficient in vitro and in vivo antitumor efficacy in colorectal tumors. Intriguingly, we further demonstrated that oncolytic adenoviruses reactivated cGAS by promoting H3K4 trimethylation of the cGAS promoter. In addition, silencing GAU1 using antisense oligonucleotides significantly reduced H3K27 acetylation at the NF-κB p65 promoter and inhibited NF-κB p65 transcription. Our study revealed an aberrant therapeutic mechanism underlying two tumor defects, cGAS and NF-κB p65, and provided an alternative IDTR approach based on oncolytic adenovirus and antisense oligonucleotides for efficient therapeutic efficacy in tumors.

3.
Cancer Lett ; 596: 216988, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38797234

RESUMO

Type I interferons exhibit anti-proliferative and anti-cancer activities, but their detailed regulatory mechanisms in cancer have not been fully elucidated yet. RNA binding proteins are master orchestrators of gene regulation, which are closely related to tumor progression. Here we show that the upregulated RNA binding protein RBM45 correlates with poor prognosis in breast cancer. Depletion of RBM45 suppresses breast cancer progression both in cultured cells and xenograft mouse models. Mechanistically, RBM45 ablation inhibits breast cancer progression through regulating type I interferon signaling, particularly by elevating IFN-ß production. Importantly, RBM45 recruits TRIM28 to IRF7 and stimulates its SUMOylation, thereby repressing IFNB1 transcription. Loss of RBM45 reduced the SUMOylation of IRF7 by reducing the interaction between TRIM28 and IRF7 to promote IFNB1 transcription, leading to the inhibition of breast cancer progression. Taken together, our finding uncovers a vital role of RBM45 in modulating type I interferon signaling and cancer aggressive progression, implicating RBM45 as a potential therapeutic target in breast cancer.


Assuntos
Neoplasias da Mama , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Fator Regulador 7 de Interferon , Proteínas de Ligação a RNA , Sumoilação , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Feminino , Animais , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/metabolismo , Camundongos , Transcrição Gênica , Linhagem Celular Tumoral , Interferon beta/metabolismo , Interferon beta/genética , Transdução de Sinais , Camundongos Nus , Proliferação de Células , Proteína 28 com Motivo Tripartido/metabolismo , Proteína 28 com Motivo Tripartido/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Endogâmicos BALB C
4.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167115, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458543

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is the most frequent subtype of head and neck cancer, generally with a poor prognosis and limited therapeutic options due to its highly heterogeneous malignancy. In this study, we screened functional splicing regulatory RNA binding proteins (RBPs) that were closely related with the prognosis of HNSCC patients and showed significant expression differences between HNSCC tumors and normal tissues. Based on this finding, we chose six candidate genes (HNRNPC, ZCRB1, RBM12B, SF3A2, SF3B3, and SRSF11) to generate a prognostic prediction model and validated the accuracy of the prognostic model for predicting patient survival outcomes. We found that the risk score predicted by our model can serve as an independent prognostic predictor. Notably, HNSCC tumors showing higher expression of SF3B3, HNRNPC, or ZCRB1 possessed higher risk scores in the discovered prediction model. The investigation of the underlying mechanism validated that knockdown of SF3B3, HNRNPC, and ZCRB1 separately induced a substantial impairment of HNSCC cell survival. Conversely, overexpression of each of the three genes promoted tumor cellular proliferation. High throughput RNA sequencing analysis revealed that changes in the expression of SF3B3 and HNRNPC remarkably affected alternative splicing of genes related to cell cycle regulation, whereas the depletion of ZCRB1 contributed to aberrant splicing events involving in DNA damage response. In addition, the prognostic prediction model's risk score was demonstrated to be related with the immune infiltration score. Particularly, SF3B3 has a negative correlation with CD8A expression. Therefore, our findings provide promising prognosis predictors and potential therapeutic targets for better treatment efficacy of HNSCC.


Assuntos
Neoplasias de Cabeça e Pescoço , Oncogenes , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Fatores de Processamento de RNA/genética , Processamento Alternativo , Neoplasias de Cabeça e Pescoço/genética
5.
Adv Sci (Weinh) ; 11(15): e2307122, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342601

RESUMO

Metastasis is the leading cause for the high mortality of lung cancer, however, effective anti-metastatic drugs are still limited. Here it is reported that the RNA-binding protein RBMS1 is positively associated with increased lymph node metastasis in non-small cell lung cancer (NSCLC). Depletion of RBMS1 suppresses cancer cell migration and invasion in vitro and inhibits cancer cell metastasis in vivo. Mechanistically, RBMS1 interacts with YTHDF1 to promote the translation of S100P, thereby accelerating NSCLC cell metastasis. The RRM2 motif of RBMS1 and the YTH domain of YTHDF1 are required for the binding of RBMS1 and YTHDF1. RBMS1 ablation inhibits the translation of S100P and suppresses tumor metastasis. Targeting RBMS1 with NTP, a small molecular chemical inhibitor of RBMS1, attenuates tumor metastasis in a mouse lung metastasis model. Correlation studies in lung cancer patients further validate the clinical relevance of the findings. Collectively, the study provides insight into the molecular mechanism by which RBMS1 promotes NSCLC metastasis and offers a therapeutic strategy for metastatic NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Camundongos , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Neoplasias/metabolismo
6.
Biochim Biophys Acta Rev Cancer ; 1878(5): 188948, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37394019

RESUMO

The human genome is intertwined, folded, condensed, and gradually constitutes the 3D architecture, thereby affecting transcription and widely involving in tumorigenesis. Incidence and mortality rates for orphan cancers increase due to poor early diagnosis and lack of effective medical treatments, which are now getting attention. In-depth understanding in tumorigenesis has fast-tracked over the last decade, however, the further role and mechanism of 3D genome organization in variant orphan tumorigenesis remains to be fully understood. We summarize for the first time that higher-order genome organization can provide novel insights into the occurrence mechanisms of orphan cancers, and discuss probable future research directions for drug development and anti-tumor therapies.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Genoma Humano , Carcinogênese/genética
7.
Virulence ; 14(1): 2230009, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37367101

RESUMO

Candidiasis caused by Candida albicans infection has long been a serious human health problem. The pathogenicity of C. albicans is mainly due to its virulence factors, which are novel targets of antifungal drugs for low risk of resistance development. In this study, we identified a maleimide compound [1-(4-methoxyphenyl)-1hydro-pyrrole-2,5-dione, MPD] that exerts effective anti-virulence activity. It could inhibit the process of adhesion, filamentation, and biofilm formation in C. albicans. In addition, it exhibited low cytotoxicity, hemolytic activity, and drug resistance development. Moreover, in Galleria mellonella-C. albicans (in vivo) infection model, the survival time of infected larvae was significantly prolonged under the treatment of MPD. Further, mechanism research revealed that MPD increased farnesol secretion by upregulating the expression of Dpp3. The increased farnesol inhibited the activity of Cdc35, which then decreased the intracellular cAMP content resulting in the inhibition of virulence factors via the Ras1-cAMP-Efg1 pathway. In all, this study evaluated the inhibitory effect of MPD on various virulence factors of C. albicans and identified the underlying mechanisms. This suggests a potential application of MPD to overcome fungal infections in clinics.


Assuntos
Candida albicans , Candidíase , Animais , Humanos , Candida albicans/metabolismo , Fatores de Virulência/metabolismo , Farneseno Álcool/farmacologia , Candidíase/microbiologia , Antifúngicos/uso terapêutico , Maleimidas/metabolismo , Maleimidas/farmacologia , Maleimidas/uso terapêutico , Biofilmes , Hifas
8.
Cell Death Differ ; 30(7): 1757-1770, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37173391

RESUMO

The ubiquitin-proteasome system governs a wide spectrum of cellular events and offers therapeutic opportunities for pharmacological intervention in cancer treatment. Renal clear cell carcinoma represents the predominant histological subtype and accounts for the majority of cancer death related to kidney malignancies. Through a systematic survey in the association of human ubiquitin-specific proteases with patient prognosis of renal clear cell carcinoma and subsequent phenotypic validation, we uncovered the tumor-promoting role of USP35. Biochemical characterizations confirmed the stabilizing effects of USP35 towards multiple members of the IAP family in an enzymatic activity-dependent manner. USP35 silencing led to reduced expression levels of IAP proteins, which were accompanied with increased cellular apoptosis. Further transcriptomic analysis revealed that USP35 knockdown affected the expression levels of NRF2 downstream transcripts, which were conferred by compromised NRF2 abundance. USP35 functions to maintain NRF2 levels by catalyzing its deubiquitylation and thus antagonizing degradation. NRF2 reduction imposed by USP35 silencing rendered renal clear cell carcinoma cells increased sensitivity to ferroptosis induction. Finally, induced USP35 knockdown markedly attenuated xenograft formation of renal clear cell carcinoma in nude mice. Hence, our findings reveal a number of USP35 substrates and uncover the protecting roles of USP35 against both apoptosis and ferroptosis in renal clear cell carcinoma.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Camundongos , Humanos , Camundongos Nus , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Carcinoma de Células Renais/genética , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Apoptose , Linhagem Celular Tumoral , Endopeptidases
9.
Signal Transduct Target Ther ; 8(1): 159, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37080995

RESUMO

Cellular senescence provides a protective barrier against tumorigenesis in precancerous or normal tissues upon distinct stressors. However, the detailed mechanisms by which tumor cells evade premature senescence to malignant progression remain largely elusive. Here we reported that RBM4 adversely impacted cellular senescence to favor glutamine-dependent survival of esophageal squamous cell carcinoma (ESCC) cells by dictating the activity of LKB1, a critical governor of cancer metabolism. The level of RBM4 was specifically elevated in ESCC compared to normal tissues, and RBM4 overexpression promoted the malignant phenotype. RBM4 contributed to overcome H-RAS- or doxorubicin-induced senescence, while its depletion caused P27-dependent senescence and proliferation arrest by activating LKB1-AMPK-mTOR cascade. Mechanistically, RBM4 competitively bound LKB1 to disrupt the LKB1/STRAD/MO25 heterotrimeric complex, subsequently recruiting the E3 ligase TRIM26 to LKB1, promoting LKB1 ubiquitination and degradation in nucleus. Therefore, such molecular process leads to bypassing senescence and sustaining cell proliferation through the activation of glutamine metabolism. Clinically, the ESCC patients with high RBM4 and low LKB1 have significantly worse overall survival than those with low RBM4 and high LKB1. The RBM4 high/LKB1 low expression confers increased sensitivity of ESCC cells to glutaminase inhibitor CB-839, providing a novel insight into mechanisms underlying the glutamine-dependency to improve the efficacy of glutamine inhibitors in ESCC therapeutics.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Senescência Celular/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Glutamina/genética , Glutamina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ligação a RNA , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
10.
Microb Pathog ; 178: 106056, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36893904

RESUMO

As an obligate intracellular pathogen, Chlamydia trachomatis assumes various strategies to inhibit host cells apoptosis, thereby providing a suitable intracellular environment to ensure completion of the development cycle. In the current study, we revealed that Pgp3 protein, one of eight plasmid proteins of C. trachomatis that has been illustrated as the key virulence factor, increased HO-1 expression to suppress apoptosis, and downregulation of HO-1 with siRNA-HO-1 failed to exert anti-apoptosis activity of Pgp3 protein. Moreover, treatment of PI3K/Akt pathway inhibitor and Nrf2 inhibitor evidently reduced HO-1 expression and Nrf2 nuclear translocation was blocked by PI3K/Akt pathway inhibitor. These findings highlight that induction of HO-1 expression by Pgp3 protein is probably due to regulation of Nrf2 nuclear translocation activated by PI3K/Akt pathway, which provide clues on how C. trachomatis adjusts apoptosis.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regulação para Cima , Chlamydia trachomatis , Estresse Oxidativo , Fator 2 Relacionado a NF-E2/metabolismo
11.
Life Sci ; 315: 121274, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36509195

RESUMO

AIMS: Oral squamous cell carcinoma (OSCC) is considered as the sixth most common cancer worldwide characterized by high invasiveness, high metastasis rate and high mortality. It is urgent to explore novel therapeutic strategies to overcome this feature. Metformin is currently a strong candidate anti-tumor drug in multiple cancers. However, whether metformin could inhibit cancer progression by regulating RNA alternative splicing remains largely unknown. MAIN METHODS: Cell proliferation and growth ability of CAL-27 and UM-SCC6 were analyzed by CCK8 and colony formation assays. Cell migration was judged by wound healing assay. Mechanistically, RNA-seq was applied to systematically identify genes that are regulated by metformin. The expression of metformin-regulated genes was determined by real-time quantitative PCR (RT-qPCR). Metformin-regulated alternative splicing events were confirmed by RT-PCR. KEY FINDINGS: We demonstrated that metformin could significantly inhibit the proliferation and migration of oral squamous cell carcinoma cells. Mechanistically, in addition to transcriptional regulation, metformin induces a wide range of alternative splicing alteration, including genes involved in centrosome, cellular response to DNA damage stimulus, GTPase binding, histone modification, catalytic activity, regulation of cell cycle process and ATPase complex. Notably, metformin specifically modulates the splicing of NUBP2, a component of the cytosolic iron-sulfur (Fe/S) protein assembly (CIA). Briefly, metformin favors the production of NUBP2-L, the long splicing isoform of NUBP2, thereby inhibiting cancer cell proliferation. SIGNIFICANCE: Our findings provide mechanistic insights of metformin on RNA alternative splicing regulation, thus to offer a potential novel route for metformin to inhibit cancer progression.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Metformina , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , RNA/metabolismo , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Processamento Alternativo , Metformina/farmacologia , Metformina/uso terapêutico , Proliferação de Células , Neoplasias de Cabeça e Pescoço/genética , Linhagem Celular Tumoral , Movimento Celular , Regulação Neoplásica da Expressão Gênica
12.
Ophthalmol Sci ; 2(2): 100148, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36249679

RESUMO

Purpose: To propose an improved stem cell-based strategy for limbal stem cell deficiency (LSCD) treatment. Design: Experimental randomized or parallel-group animal study. Subjects: Fifty adult male New Zealand white rabbits. Methods: Human limbal stem/progenitor cells (LSCs) and limbal stromal stem/progenitor cells (LSSCs) were cultured in serum-free conditions and further differentiated into corneal epithelial cells and keratocytes, respectively. All cell types were characterized with lineage-specific markers. Gene expression analysis was performed to identify the potential function of LSSCs in corneal regeneration. Two LSCD models of rabbits for transplantations were used: transplantation performed at the time of limbal and corneal epithelial excision (LSCD model) and transplantation performed after clinical signs were induced in an LSCD model (pLSCD model). The pLSCD model better mimics the pathologic changes and symptoms of human LSCD. Rabbit models received LSC or LSC plus LSSC treatment. Corneal epithelial defects, neovascularization, and opacity were assessed every 3 weeks for 24 weeks. ZsGreen-labeled LSSCs were used for short-term tracking in vivo. Main Outcome Measures: Rates of corneal epithelial defect area, corneal neovascularization and opacity scores, graft survival rate, and immunofluorescence staining of specific markers. Results: Both LSC transplantation and LSC plus LSSC cotransplantation effectively repaired the corneal surface in the LSCD model. These 2 strategies showed no significant differences in terms of graft survival rate or epithelial repair. However, corneal opacity was observed in the LSC group (in 3 of 8 rabbits), but not in the LSC plus LSSC group. Notably, when treating LSCD rabbits with distinguishable stromal opacification and neovascularization, cotransplantation of LSCs and LSSCs exhibited significantly better therapeutic effects than transplantation of LSCs alone, with graft survival rates of 87.5% and 37.5%, respectively. The implanted LSSCs could differentiate into keratocytes during the wound-healing process. RNA sequencing analysis showed that the stromal cells produced not only a collagen-rich extracellular matrix to facilitate reconstruction of the lamellar structure, but also niche factors that accelerated epithelial cell growth and inhibited angiogenesis and inflammation. Conclusions: These findings highlight the support of stromal cells in niche homeostasis and tissue regeneration, providing LSC plus LSSC cotransplantation as a new treatment strategy for corneal blindness.

13.
Front Pharmacol ; 13: 1007006, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225557

RESUMO

Hepatocellular carcinoma (HCC) is one of the most common primary cancers with limited therapeutic options. Melatonin, a neuroendocrine hormone produced primarily by the pineal gland, demonstrates an anti-cancer effect on a myriad of cancers including HCC. However, whether melatonin could suppress tumor growth through regulating RNA alternative splicing remains largely unknown. Here we demonstrated that melatonin could inhibit the growth of HCC. Mechanistically, melatonin induced transcriptional alterations of genes, which are involved in DNA replication, DNA metabolic process, DNA repair, response to wounding, steroid metabolic process, and extracellular matrix functions. Importantly, melatonin controlled numerous cancer-related RNA alternative splicing events, regulating mitotic cell cycle, microtubule-based process, kinase activity, DNA metabolic process, GTPase regulator activity functions. The regulatory effect of melatonin on alternative splicing is partially mediated by melatonin receptor MT1. Specifically, melatonin regulates the splicing of IKBKG (NEMO), an essential modulator of NF-κB. In brief, melatonin increased the production of the long isoform of NEMO-L with exon 5 inclusion, thereby inhibiting the growth of HepG2 cells. Collectively, our study provides a novel mechanism of melatonin in regulating RNA alternative splicing, and offers a new perspective for melatonin in the inhibition of cancer progression.

14.
BMC Oral Health ; 22(1): 335, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35945572

RESUMO

BACKGROUND: To evaluate and compare the clinical outcomes of digitally prefabricated and conventionally fabricated implant-supported full-arch provisional prostheses. METHODS: In this retrospective study, a total of 39 patients (22 males and 17 females) who underwent implant-supported full-arch rehabilitation using the All-on-4 concept with an immediate loading protocol were included: 20 patients treated with digitally prefabricated provisional prostheses were assigned into Group A, and 19 patients treated with conventionally fabricated provisional prostheses were assigned into Group B. Implant/provisional prosthesis survival rates and complications were reviewed. Marginal bone loss (MBL) was investigated by CBCT. Surgical time, restorative time, and total operative time were analyzed. Postoperative pain and swelling were evaluated with the visual analog scale (VAS). The oral health impact profile (OHIP) questionnaire was administered before and after surgery. RESULTS: The implant/provisional prosthesis survival rate was 100%, and complications appeared with low frequency in both groups, while the mean MBL was 0.30 ± 0.29 mm in Group A and 0.31 ± 0.41 mm in Group B after 3~ 6 months (P > 0.05). The average restorative time in Group A (116.16 ± 16.61 min) was significantly shorter than that in Group B (242.11 ± 30.14 min) (P < 0.05). Patients in Group A showed lower pain/swelling VAS scores after surgery than Group B (P < 0.05). Low OHIP scores with high satisfaction with the overall effects were shown in both groups. CONCLUSION: Prefabricated prostheses reduced the prosthetic time and postoperative discomfort in patients whose immediate rehabilitation was based on the All-on-4 concept. This prefabrication technology may be a predictable alternative to improve the short-term clinical outcome of implant-supported full-arch provisional rehabilitation.


Assuntos
Implantes Dentários , Carga Imediata em Implante Dentário , Prótese Dentária Fixada por Implante , Feminino , Seguimentos , Humanos , Masculino , Falha de Prótese , Estudos Retrospectivos , Resultado do Tratamento
15.
Biochim Biophys Acta Mol Cell Res ; 1869(10): 119324, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35809864

RESUMO

Although the protective effects of Chlamydia psittaci plasmid-encoded protein CPSIT_P7 as vaccine antigens to against chlamydial infection have been confirmed in our previous study, the function and mechanism of CPSIT_P7 inducing innate immunity in the antibacterial response remain unknown. Here, we found that plasmid protein CPSIT_P7 could induce M1 macrophage polarization upregulating the genes of the surface molecule CD86, proinflammatory cytokines (TNF-α, IL-6, and IL-1ß), and antibacterial effector NO synthase 2 (iNOS). During M1 macrophage polarization, macrophages acquire phagocytic and microbicidal competence, which promotes the host antibacterial response. As we observed that CPSIT_P7-induced M1 macrophages could partially reduce the infected mice pulmonary Chlamydia psittaci load. Furthermore, CPSIT_P7 induced M1 macrophage polarization through the TLR4-mediated MAPK and NF-κB pathways. Collectively, our results highlight the effect of CPSIT_P7 on macrophage polarization and provide new insights into new prevention and treatment strategies for chlamydial infection.


Assuntos
Chlamydophila psittaci , Psitacose , Animais , Antibacterianos/metabolismo , Chlamydophila psittaci/genética , Chlamydophila psittaci/metabolismo , Macrófagos/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Plasmídeos/genética , Psitacose/microbiologia , Psitacose/prevenção & controle , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
16.
Cell Death Differ ; 29(11): 2247-2261, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35538152

RESUMO

Immunotherapy has been widely utilized in multiple tumors, however, its efficacy in the treatment of triple-negative breast cancers (TNBC) is still being challenged. Meanwhile, functions and mechanisms of RNA binding proteins in regulating immunotherapy for TNBC remain largely elusive. Here we reported that the RNA binding protein RBMS1 is prevalent among immune-cold TNBC. Through a systematic shRNA-mediated screen, we found depletion of RBMS1 significantly reduced the level of programmed death ligand 1 (PD-L1) in TNBC. Clinically, RBMS1 was increased in breast cancer and its level was positively correlated to that of PD-L1. RBMS1 ablation stimulated cytotoxic T cell mediated anti-tumor immunity. Mechanistically, RBMS1 regulated the mRNA stability of B4GALT1, a newly identified glycosyltransferase of PD-L1. Depletion of RBMS1 destabilized the mRNA of B4GALT1, inhibited the glycosylation of PD-L1 and promoted the ubiquitination and subsequent degradation of PD-L1. Importantly, combination of RBMS1 depletion with CTLA4 immune checkpoint blockade or CAR-T treatment enhanced anti-tumor T-cell immunity both in vitro and in vivo. Together, our findings provided a new immunotherapeutic strategy against TNBC by targeting the immunosuppressive RBMS1.


Assuntos
Antígeno B7-H1 , Neoplasias de Mama Triplo Negativas , Humanos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Imunoterapia , Anticorpos/uso terapêutico , RNA Interferente Pequeno/uso terapêutico , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a RNA
17.
Virulence ; 13(1): 444-457, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35266440

RESUMO

Persistent infection of Chlamydia trachomatis is thought to be responsible for the debilitating sequelae of blinding trachoma and infertility. Inhibition of host cell apoptosis is a persistent C. trachomatis infection mechanism. ZEB1-AS1 is a long non-coding RNA (lncRNA), which was up-regulated in persistent C. trachomatis infection in our previous work. In this study, we investigated the role of ZEB1-AS1 in persistent infection and the potential mechanisms. The results showed that ZEB1-AS1 was involved in the regulation of apoptosis, and targeted silencing of ZEB1-AS1 could increase the apoptosis rate of persistently infected cells. Mechanically, interference ZEB1-AS1 caused an apparent down-regulation of the Bcl-2/Bax ratio and the repression of the mitochondrial membrane potential with the remarkable release of cytochrome c, resulting in the significant elevation level of caspase-3 activation. Meanwhile, the luciferase reporter assay confirmed that ZEB1-AS1 acted as a sponge for miR-1224-5p to target MAP4K4. The regulatory effect of miR-1224-5p/MAP4K4 on persistent infection-induced antiapoptosis was regulated by ZEB1-AS1. In addition, ZEB1-AS1 inhibited the apoptosis of Chlamydia-infected cells by activating the MAPK/ERK pathway. In conclusion, we found a new molecular mechanism that the ZEB1-AS1/miR-1224-5p/MAP4K4 axis contributes to apoptosis resistance in persistent C. trachomatis infection. This work may help understand the pathogenic mechanisms of persistent C. trachomatis infection and reveal a potential therapeutic strategy for its treatment.


Assuntos
MicroRNAs , RNA Longo não Codificante , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Chlamydia trachomatis/genética , Chlamydia trachomatis/metabolismo , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Proteínas Serina-Treonina Quinases , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
18.
J Clin Invest ; 131(22)2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34609966

RESUMO

Ferroptosis, an iron-dependent nonapoptotic cell death, is a highly regulated tumor suppressing process. However, functions and mechanisms of RNA-binding proteins in regulation of evasion of ferroptosis during lung cancer progression are still largely unknown. Here, we report that the RNA-binding protein RBMS1 participates in lung cancer development via mediating ferroptosis evasion. Through an shRNA-mediated systematic screen, we discovered that RBMS1 is a key ferroptosis regulator. Clinically, RBMS1 was elevated in lung cancer and its high expression was associated with reduced patient survival. Conversely, depletion of RBMS1 inhibited lung cancer progression both in vivo and in vitro. Mechanistically, RBMS1 interacted with the translation initiation factor eIF3d directly to bridge the 3'- and 5'-UTR of SLC7A11. RBMS1 ablation inhibited the translation of SLC7A11, reduced SLC7A11-mediated cystine uptake, and promoted ferroptosis. In a drug screen that targeted RBMS1, we further uncovered that nortriptyline hydrochloride decreased the level of RBMS1, thereby promoting ferroptosis. Importantly, RBMS1 depletion or inhibition by nortriptyline hydrochloride sensitized radioresistant lung cancer cells to radiotherapy. Our findings established RBMS1 as a translational regulator of ferroptosis and a prognostic factor with therapeutic potential and clinical value.


Assuntos
Sistema y+ de Transporte de Aminoácidos/genética , Proteínas de Ligação a DNA/fisiologia , Neoplasias Pulmonares/patologia , Biossíntese de Proteínas , Proteínas de Ligação a RNA/fisiologia , Animais , Linhagem Celular Tumoral , Ferroptose , Células HEK293 , Humanos , Neoplasias Pulmonares/radioterapia , Camundongos , Proteínas Proto-Oncogênicas c-ets/fisiologia , Tolerância a Radiação , Fatores de Transcrição/fisiologia
19.
Cell Death Differ ; 28(8): 2482-2498, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33731873

RESUMO

Liquid-liquid phase separation is considered a generic approach to organize membrane-less compartments, enabling the dynamic regulation of phase-separated assemblies to be investigated and pivotal roles of protein posttranslational modifications to be demonstrated. By surveying the subcellular localizations of human deubiquitylases, USP42 was identified to form nuclear punctate structures that are associated with phase separation properties. Bioinformatic analysis demonstrated that the USP42 C-terminal sequence was intrinsically disordered, which was further experimentally confirmed to confer phase separation features. USP42 is distributed to SC35-positive nuclear speckles in a positively charged C-terminal residue- and enzymatic activity-dependent manner. Notably, USP42 directs the integration of the spliceosome component PLRG1 into nuclear speckles, and its depletion interferes with the conformation of SC35 foci. Functionally, USP42 downregulation deregulates multiple mRNA splicing events and leads to deterred cancer cell growth, which is consistent with the impact of PLRG1 repression. Finally, USP42 expression is strongly correlated with that of PLRG1 in non-small-cell lung cancer samples and predicts adverse prognosis in overall survival. As a deubiquitylase capable of dynamically guiding nuclear speckle phase separation and mRNA splicing, USP42 inhibition presents a novel anticancer strategy by targeting phase separation.


Assuntos
Carcinogênese/metabolismo , Extração Líquido-Líquido/métodos , Salpicos Nucleares/metabolismo , Splicing de RNA/genética , Tioléster Hidrolases/genética , Transfecção/métodos , Humanos
20.
Signal Transduct Target Ther ; 6(1): 108, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33664238

RESUMO

Alternative splicing is a critical process to generate protein diversity. However, whether and how alternative splicing regulates autophagy remains largely elusive. Here we systematically identify the splicing factor SRSF1 as an autophagy suppressor. Specifically, SRSF1 inhibits autophagosome formation by reducing the accumulation of LC3-II and numbers of autophagosomes in different cell lines. Mechanistically, SRSF1 promotes the splicing of the long isoform of Bcl-x that interacts with Beclin1, thereby dissociating the Beclin1-PIK3C3 complex. In addition, SRSF1 also directly interacts with PIK3C3 to disrupt the interaction between Beclin1 and PIK3C3. Consequently, the decrease of SRSF1 stabilizes the Beclin1 and PIK3C3 complex and activates autophagy. Interestingly, SRSF1 can be degraded by starvation- and oxidative stresses-induced autophagy through interacting with LC3-II, whereas reduced SRSF1 further promotes autophagy. This positive feedback is critical to inhibiting Gefitinib-resistant cancer cell progression both in vitro and in vivo. Consistently, the expression level of SRSF1 is inversely correlated to LC3 level in clinical cancer samples. Our study not only provides mechanistic insights of alternative splicing in autophagy regulation but also discovers a new regulatory role of SRSF1 in tumorigenesis, thereby offering a novel avenue for potential cancer therapeutics.


Assuntos
Classe III de Fosfatidilinositol 3-Quinases/genética , Neoplasias Pulmonares/genética , Proteínas Associadas aos Microtúbulos/genética , Fatores de Processamento de Serina-Arginina/genética , Proteína bcl-X/genética , Células A549 , Processamento Alternativo/genética , Animais , Autofagossomos/genética , Autofagia/genética , Carcinogênese/genética , Regulação Neoplásica da Expressão Gênica/genética , Xenoenxertos , Humanos , Neoplasias Pulmonares/patologia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA