Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Proteomics ; 16: 1, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30622446

RESUMO

BACKGROUND: Misdiagnosis of autoimmune pancreatitis (AIP) as pancreatic cancer (PDAC) or vice versa can cause dismal patents' outcomes. Changes in IgG glycosylation are associated with cancers and autoimmune diseases. This study investigated the IgG glycosylation profiles as diagnostic and prognostic biomarkers in PDAC and AIP. METHODS: Serum IgG-glycosylation profiles from 86 AIP patients, 115 PDAC patients, and 57 controls were analyzed using liquid chromatography-electrospray ionization mass spectrometry. Classification and regression tree (CART) analysis was applied to build a decision tree for discriminating PDAC from AIP. The result was validated in an independent cohort. RESULTS: Compared with AIP patients and controls, PDAC patients had significantly higher agalactosylation, lower fucosylation, and sialylation of IgG1, a higher agalactosylation ratio of IgG1 and a higher agalactosylation ratio of IgG2. AIP patients had significantly higher fucosylation of IgG1 and a higher sialylation ratio of IgG subclasses 1, 2 and 4. Using the CART analysis of agalactosylation and sialylation ratios in the IgG to discriminate AIP from PDAC, the diagnostic accuracy of the glycan markers was 93.8% with 94.6% sensitivity and 92.9% specificity. There were no statistically significant difference of IgG-glycosylation profiles between diffuse type and focal type AIP. CONCLUSIONS: AIP and PDAC patients have distinct IgG-glycosylation profilings. IgG-glycosylation could different PDAC from AIP with high accuracy.

2.
Int J Cancer ; 144(8): 1996-2007, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30252131

RESUMO

ST3Gal1 is a key sialyltransferase which adds α2,3-linked sialic acid to substrates and generates core 1 O-glycan structure. Upregulation of ST3Gal1 has been associated with worse prognosis of breast cancer patients. However, the protein substrates of ST3Gal1 implicated in tumor progression remain elusive. In our study, we demonstrated that ST3GAL1-silencing significantly reduced tumor growth along with a notable decrease in vascularity of MCF7 xenograft tumors. We identified vasorin (VASN) which was shown to bind TGF-ß1, as a potential candidate that links ST3Gal1 to angiogenesis. LC-MS/MS analysis of VASN secreted from MCF7, revealed that more than 80% of its O-glycans are sialyl-3T and disialyl-T. ST3GAL1-silencing or desialylation of VASN by neuraminidase enhanced its binding to TGF-ß1 by 2- to 3-fold and thereby dampening TGF-ß1 signaling and angiogenesis, as indicated by impaired tube formation of HUVECs, suppressed angiogenesis gene expression and reduced activation of Smad2 and Smad3 in HUVEC cells. Examination of 114 fresh primary breast cancer and their adjacent normal tissues showed that the expression levels of ST3Gal1 and TGFB1 were high in tumor part and the expression of two genes was positively correlated. Kaplan Meier survival analysis showed a significantly shorter relapse-free survival for those with lower expression VASN, notably, the combination of low VASN with high ST3GAL1 yielded even higher risk of recurrence (p = 0.025, HR = 2.967, 95% CI = 1.14-7.67). Since TGF-ß1 is known to transcriptionally activate ST3Gal1, our findings illustrated a feedback regulatory loop in which TGF-ß1 upregulates ST3Gal1 to circumvent the negative impact of VASN.


Assuntos
Neoplasias da Mama/patologia , Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Recidiva Local de Neoplasia/patologia , Neovascularização Patológica/patologia , Sialiltransferases/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Mama/patologia , Neoplasias da Mama/irrigação sanguínea , Neoplasias da Mama/mortalidade , Progressão da Doença , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Células MCF-7 , Camundongos , Recidiva Local de Neoplasia/epidemiologia , RNA Interferente Pequeno/metabolismo , Ácidos Siálicos/metabolismo , Sialiltransferases/genética , Transdução de Sinais , Análise de Sobrevida , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto , beta-Galactosídeo alfa-2,3-Sialiltransferase
3.
Proc Natl Acad Sci U S A ; 115(28): 7302-7307, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29941599

RESUMO

Protein O-glycosylation by attachment of ß-N-acetylglucosamine (GlcNAc) to the Ser or Thr residue is a major posttranslational glycosylation event and is often associated with protein folding, stability, and activity. The methylation of histone H3 at Lys-27 catalyzed by the methyltransferase EZH2 was known to suppress gene expression and cancer development, and we previously reported that the O-GlcNAcylation of EZH2 at S76 stabilized EZH2 and facilitated the formation of H3K27me3 to inhibit tumor suppression. In this study, we employed a fluorescence-based method of sugar labeling combined with mass spectrometry to investigate EZH2 glycosylation and identified five O-GlcNAcylation sites. We also find that mutation of one or more of the O-GlcNAcylation sites S73A, S76A, S84A, and T313A in the N-terminal region decreases the stability of EZH2, but does not affect its association with the PRC2 components SUZ12 and EED. Mutation of the C-terminal O-GlcNAcylation site (S729A) in the catalytic domain of EZH2 abolishes the di- and trimethylation activities, but not the monomethylation of H3K27, nor the integrity of the PRC2/EZH2 core complex. Our results show the effect of individual O-GlcNAcylation sites on the function of EZH2 and suggest an alternative approach to tumor suppression through selective inhibition of EZH2 O-GlcNAcylation.


Assuntos
Acetilglucosamina/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Mutação de Sentido Incorreto , Acetilglucosamina/química , Acetilglucosamina/genética , Substituição de Aminoácidos , Linhagem Celular , Proteína Potenciadora do Homólogo 2 de Zeste/química , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Estabilidade Enzimática , Glicosilação , Humanos , Domínios Proteicos
4.
J Am Chem Soc ; 139(28): 9431-9434, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28678517

RESUMO

The core fucosylation of N-glycans on glycoproteins is catalyzed by fucosyltransferase 8 (FUT8) in mammalian cells and is involved in various biological functions, such as protein function, cancer progression, and postnatal development. The substrate specificity of FUT8 toward bi-antennary N-glycans has been reported, but it is unclear with regard to tri-antennary and tetra-antennary glycans. Here, we examined the specificity and activity of human FUT8 toward tri- and tetra-antennary N-glycans in the forms of glycopeptides. We found that the tri-antennary glycan [A3(2,4,2) type] terminated with N-acetylglucosamine (GlcNAc), which is generated by N-acetylglucosaminyltransferase (GnT)-IV, is a good substrate for FUT8, but the A3(2,2,6) type of tri-antennary glycan, generated by GnT-V, is not a substrate for FUT8. We also observed that core fucosylation reduced the activity of GnT-IV toward the bi-antennary glycan. Examining the correlation between the types of N-glycans and the expression levels of FUT8, GnT-IV, and GnT-V in cells revealed that these glycosyltransferases, particularly GnT-IV, play important roles in directing the branching and core fucosylation of N-glycans in vivo. This study thus provides insights into the interplay among FUT8, GnT-IV, and GnT-V in N-linked glycosylation during the assembly of glycoproteins.


Assuntos
Fucose/metabolismo , Fucosiltransferases/metabolismo , Glicoproteínas/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Polissacarídeos/metabolismo , Biocatálise , Fucose/química , Fucosiltransferases/química , Glicoproteínas/química , Glicosilação , Humanos , N-Acetilglucosaminiltransferases/química , Polissacarídeos/química , Especificidade por Substrato
5.
Dis Markers ; 2016: 8915809, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27065039

RESUMO

Glycans of prostate-specific antigen (PSA) in prostate cancer were found to be different from that in benign disease. It is difficult to analyze heterogeneous PSA glycoforms in each individual specimen because of low protein abundance and the limitation of detection sensitivity. We developed a method for prostate cancer diagnosis based on PSA glycoforms. Specific glycoforms were screened in each clinical sample based on liquid chromatography-tandem mass spectrometry with ion accumulation. To look for potential biomarkers, normalized abundance of each glycoform in benign prostate hyperplasia (BPH) and in prostate cancer was evaluated. The PSA glycoform, Hex5HexNAc4NeuAc1dHex1, and monosialylated, sialylated, and unfucosylated glycoforms differed significantly between the prostate cancer and BPH samples. The detection sensitivity (87.5%) and specificity (60%) for prostate cancer identification are higher than those of the serum PSA marker. As low as 100 amol PSA could be detected with the ion accumulation method which has not been reported before. The improved detection specificity can help reduce unnecessary examinations.


Assuntos
Glicopeptídeos/isolamento & purificação , Calicreínas/urina , Antígeno Prostático Específico/urina , Hiperplasia Prostática/diagnóstico , Hiperplasia Prostática/metabolismo , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/metabolismo , Idoso , Idoso de 80 Anos ou mais , Cromatografia Líquida , Diagnóstico Diferencial , Glicosilação , Humanos , Íons/metabolismo , Calicreínas/sangue , Calicreínas/isolamento & purificação , Masculino , Pessoa de Meia-Idade , Antígeno Prostático Específico/sangue , Antígeno Prostático Específico/isolamento & purificação , Sensibilidade e Especificidade , Espectrometria de Massas em Tandem
6.
Proc Natl Acad Sci U S A ; 112(42): 13057-62, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26438868

RESUMO

The incidence and mortality rate of oral cancer continue to rise, partly due to the lack of effective early diagnosis and increasing environmental exposure to cancer-causing agents. To identify new markers for oral cancer, we used a sialylation probe to investigate the glycoproteins differentially expressed on oral cancer cells. Of the glycoproteins identified, B7 Homolog 3 (B7-H3) was significantly overexpressed in oral squamous cell carcinoma (OSCC), and its overexpression correlated with larger tumor size, advanced clinical stage, and low survival rate in OSCC patients. In addition, knockdown of B7-H3 suppressed tumor cell proliferation, and restoration of B7-H3 expression enhanced tumor growth. It was also found that the N-glycans of B7-H3 from Ca9-22 oral cancer cells contain the terminal α-galactose and are more diverse with higher fucosylation and better interaction with DC-SIGN [DC-specific intercellular adhesion molecule-3 (ICAM-3)-grabbing nonintegrin] and Langerin on immune cells than that from normal cells, suggesting that the glycans on B7-H3 may also play an important role in the disease.


Assuntos
Antígenos B7/metabolismo , Carcinoma de Células Escamosas/metabolismo , Neoplasias Bucais/metabolismo , Antígenos B7/imunologia , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/patologia , Proliferação de Células , Glicosilação , Humanos , Neoplasias Bucais/imunologia , Neoplasias Bucais/patologia
7.
Stem Cell Reports ; 5(3): 392-404, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26321145

RESUMO

Multipotent human mesenchymal stromal cells (hMSCs) harbor immunomodulatory properties that are therapeutically relevant. One of the most clinically important populations of leukocytes is the interleukin-17A (IL-17A)-secreting T (Th17) lymphocytes. However, mechanisms of hMSC and Th17 cell interactions are incompletely resolved. We found that, along with Th1 responses, hMSCs strongly suppressed Th17 responses and this required both IL-25--also known as IL--17E-as well as programmed death ligand-1 (PD-L1), a potent cell surface ligand for tolerance induction. Knockdown of IL-25 expression in hMSCs abrogated Th17 suppression in vitro and in vivo. However, IL-25 alone was insufficient to significantly suppress Th17 responses, which also required surface PD-L1 expression. Critically, IL-25 upregulated PD-L1 surface expression through the signaling pathways of JNK and STAT3, with STAT3 found to constitutively occupy the proximal region of the PD-L1 promoter. Our findings demonstrate the complexities of hMSC-mediated Th17 suppression, and highlight the IL-25/STAT3/PD-L1 axis as a candidate therapeutic target.


Assuntos
Antígeno B7-H1/imunologia , Interleucina-17/imunologia , Células-Tronco Mesenquimais/imunologia , Fator de Transcrição STAT3/imunologia , Células Th17/imunologia , Transcrição Gênica/imunologia , Antígeno B7-H1/genética , Regulação da Expressão Gênica/imunologia , Técnicas de Silenciamento de Genes , Humanos , Células-Tronco Mesenquimais/citologia , Fator de Transcrição STAT3/genética , Células Th17/citologia
8.
J Am Chem Soc ; 137(30): 9685-93, 2015 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-26168351

RESUMO

Galectin-3 binding protein (Gal-3BP) is a large hyperglycosylated protein that acts as a ligand for several galectins through glycan-dependent interactions. Gal-3BP can induce galectin-mediated tumor cell aggregation to increase the survival of cancer cells in the bloodstream during the metastatic process. However, the galectin interacting with Gal-3BP and its binding specificity has not been identified and structurally elucidated, mainly due to the limitation of mass spectrometry in glycan sequencing. To understand the role of Gal-3BP, we here used liquid chromatography-mass spectrometry combined with specific exoglycosidase reactions to determine the sequences of N-glycans on Gal-3BP from MCF-7 and MDA-MB-231 cells, especially the sequences with terminal sialylation and fucosylation, and addition of LacNAc repeat structures. The N-glycans from both strains are complex type with terminal α2,3-sialidic acid and core fucose linkages, with additional α1,2- and α1,3 fucose linkages found in MCF-7 cells. Compared with that from MCF-7, the Gal-3BP from MDA-MB-231 cells had fewer tetra-antennary structures, only α1,6-linked core fucoses, and more LacNAc repeat structures; the MDA-MB-231 cells had no surface galectin-3 but used surface galectin-1 for interaction with Gal-3BP to form large oligomers and cell aggregates. This study elucidates the specificity of Gal-3BP interacting with galectin-1 and the role of Gal-3BP in cancer cell aggregation and metastasis.


Assuntos
Neoplasias da Mama/patologia , Galectina 1/metabolismo , Galectina 3/metabolismo , Metástase Neoplásica/patologia , Proteínas Sanguíneas , Neoplasias da Mama/metabolismo , Agregação Celular , Linhagem Celular Tumoral , Feminino , Galectinas , Humanos , Células MCF-7 , Ligação Proteica
9.
ACS Chem Biol ; 9(7): 1437-43, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24766301

RESUMO

Hepatitis C virus (HCV) infection is a major cause of chronic hepatitis and hepatocellular carcinoma. It infects human liver cells through several cellular protein receptors including CD81, SR-BI, claudin-1, and occludin. Previous reports also show that lectin receptors can mediate HCV recognition and entry. The envelope proteins of HCV (E1 and E2) are heavily glycosylated, further indicating the possible roles of lectin receptor-virus interaction in HCV infection. However, there is limited study investigating the relationship of HCV envelope glycoproteins and lectin as well as non-lectin receptors. Here we used surface plasmon resonance to examine the binding affinity of different glycoforms of recombinant HCV envelope protein to receptors and inspected the infectivity and assembly of HCV pseudoparticles composed of different glycoforms of envelope proteins. Our results indicated that DC-SIGN, L-SIGN, and Langerin had higher affinity to recombinant HCV envelope proteins in the presence of calcium ions than non-lectin receptors, and envelope proteins with Man8/9 N-glycans showed approximate 10-fold better binding to lectin receptors than envelope proteins with Man5 and complex type N-glycans. Interestingly, comparing among glycoforms, recombinant envelope proteins with Man5 N-glycans showed the highest binding affinity when interacting with non-lectin receptors. In summary, the glycans on HCV envelope protein play a modulatory role in HCV assembly and infection and direct HCV-receptor interaction, which mediates viral entry in different cells. Receptors with high affinity to HCV envelope proteins may be considered as targets for development of a therapeutic strategy against HCV.


Assuntos
Hepacivirus/fisiologia , Hepatite C/metabolismo , Interações Hospedeiro-Patógeno , Fígado/virologia , Proteínas do Envelope Viral/metabolismo , Antígenos CD/metabolismo , Moléculas de Adesão Celular/metabolismo , Linhagem Celular , Glicosilação , Hepatite C/virologia , Humanos , Lectinas Tipo C/metabolismo , Fígado/metabolismo , Lectinas de Ligação a Manose/metabolismo , Polissacarídeos/análise , Polissacarídeos/metabolismo , Ligação Proteica , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas do Envelope Viral/química
10.
Proc Natl Acad Sci U S A ; 110(27): 10928-33, 2013 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-23776238

RESUMO

Glycosylation, an important posttranslational modification process, can modulate the structure and function of proteins, but its effect on the properties of plasma cells is largely unknown. In this study, we identified a panel of glycoproteins by click reaction with alkynyl sugar analogs in plasma cells coupled with mass spectrometry analysis. The B-cell maturation antigen (BCMA), an essential membrane protein for maintaining the survival of plasma cells, was identified as a glycoprotein exhibiting complex-type N-glycans at a single N-glycosylation site, asparagine 42. We then investigated the effect of N-glycosylation on the function of BCMA and found that the dexamethasone-induced apoptosis in malignant plasma cells can be rescued by treatment with BCMA ligands, such as a proliferation-inducing ligand (APRIL) and B-cell-activating factor (BAFF), whereas removal of terminal sialic acid on plasma cells further potentiated the ligand-mediated protection. This effect is associated with the increased surface retention of BCMA, leading to its elevated level on cell surface. In addition, the α1-3,-4 fucosylation, but not the terminal sialylation, assists the binding of BCMA with ligands in an in vitro binding assay. Together, our results highlight the importance of N-glycosylation on BCMA in the regulation of ligand binding and functions of plasma cells.


Assuntos
Antígeno de Maturação de Linfócitos B/química , Antígeno de Maturação de Linfócitos B/metabolismo , Polissacarídeos/química , Polissacarídeos/fisiologia , Asparagina/química , Sítios de Ligação , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Química Click , Glicosilação , Humanos , Ligantes , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Plasmócitos/imunologia , Plasmócitos/metabolismo , Plasmócitos/patologia
11.
Mol Cell Proteomics ; 11(10): 901-15, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22761399

RESUMO

Mutational activation of KRAS promotes various malignancies, including lung adenocarcinoma. Knowledge of the molecular targets mediating the downstream effects of activated KRAS is limited. Here, we provide the KRAS target proteins and N-glycoproteins using human bronchial epithelial cells with and without the expression of activated KRAS (KRAS(V12)). Using an OFFGEL peptide fractionation and hydrazide method combined with subsequent LTQ-Orbitrap analysis, we identified 5713 proteins and 608 N-glycosites on 317 proteins in human bronchial epithelial cells. Label-free quantitation of 3058 proteins (≥2 peptides; coefficient of variation (CV) ≤ 20%) and 297 N-glycoproteins (CV ≤ 20%) revealed the differential regulation of 23 proteins and 14 N-glycoproteins caused by activated KRAS, including 84% novel ones. An informatics-assisted IPA-Biomarker® filter analysis prioritized some of the differentially regulated proteins (ALDH3A1, CA2, CTSD, DST, EPHA2, and VIM) and N-glycoproteins (ALCAM, ITGA3, and TIMP-1) as cancer biomarkers. Further, integrated in silico analysis of microarray repository data of lung adenocarcinoma clinical samples and cell lines containing KRAS mutations showed positive mRNA fold changes (p < 0.05) for 61% of the KRAS-regulated proteins, including biomarker proteins, CA2 and CTSD. The most significant discovery of the integrated validation is the down-regulation of FABP5 and PDCD4. A few validated proteins, including tumor suppressor PDCD4, were further confirmed as KRAS targets by shRNA-based knockdown experiments. Finally, the studies on KRAS-regulated N-glycoproteins revealed structural alterations in the core N-glycans of SEMA4B in KRAS-activated human bronchial epithelial cells and functional role of N-glycosylation of TIMP-1 in the regulation of lung adenocarcinoma A549 cell invasion. Together, our study represents the largest proteome and N-glycoproteome data sets for HBECs, which we used to identify several novel potential targets of activated KRAS that may provide insights into KRAS-induced adenocarcinoma and have implications for both lung cancer therapy and diagnosis.


Assuntos
Adenocarcinoma/genética , Proteínas Reguladoras de Apoptose/genética , Brônquios/metabolismo , Células Epiteliais/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas/genética , Proteínas de Ligação a RNA/genética , Proteínas ras/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Proteínas Reguladoras de Apoptose/metabolismo , Biomarcadores Tumorais , Brônquios/patologia , Linhagem Celular Tumoral , Células Epiteliais/patologia , Proteínas de Ligação a Ácido Graxo/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Glicosilação , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteoma/genética , Proteoma/metabolismo , Proteômica , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas p21(ras) , RNA Interferente Pequeno , Proteínas de Ligação a RNA/metabolismo , Semaforinas/genética , Semaforinas/metabolismo , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Proteínas ras/metabolismo
12.
J Virol ; 86(12): 6677-87, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22496232

RESUMO

Vaccinia virus has a broad range of infectivity in many cell lines and animals. Although it is known that the vaccinia mature virus binds to cell surface glycosaminoglycans and extracellular matrix proteins, whether additional cellular receptors are required for virus entry remains unclear. Our previous studies showed that the vaccinia mature virus enters through lipid rafts, suggesting the involvement of raft-associated cellular proteins. Here we demonstrate that one lipid raft-associated protein, integrin ß1, is important for vaccinia mature virus entry into HeLa cells. Vaccinia virus associates with integrin ß1 in lipid rafts on the cell surface, and the knockdown of integrin ß1 in HeLa cells reduces vaccinia mature virus entry. Additionally, vaccinia mature virus infection is reduced in a mouse cell line, GD25, that is deficient in integrin ß1 expression. Vaccinia mature virus infection triggers the activation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling, and the treatment of cells with inhibitors to block P13K activation reduces virus entry in an integrin ß1-dependent manner, suggesting that integrin ß1-mediates PI3K/Akt activation induced by vaccinia virus and that this signaling pathway is essential for virus endocytosis. The inhibition of integrin ß1-mediated cell adhesion results in a reduction of vaccinia virus entry and the disruption of focal adhesion and PI3K/Akt activation. In summary, our results show that the binding of vaccinia mature virus to cells mimics the outside-in activation process of integrin functions to facilitate vaccinia virus entry into HeLa cells.


Assuntos
Integrina beta1/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Vaccinia virus/fisiologia , Vacínia/metabolismo , Internalização do Vírus , Animais , Linhagem Celular , Humanos , Integrina beta1/genética , Camundongos , Camundongos Knockout , Fosfatidilinositol 3-Quinase/genética , Proteínas Proto-Oncogênicas c-akt/genética , Vacínia/enzimologia , Vacínia/genética , Vacínia/virologia , Vaccinia virus/genética
13.
Proc Natl Acad Sci U S A ; 108(28): 11332-7, 2011 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-21709263

RESUMO

Protein glycosylation is an important posttranslational process, which regulates protein folding and functional expression. Studies have shown that abnormal glycosylation in tumor cells affects cancer progression and malignancy. In the current study, we have identified sialylated proteins using an alkynyl sugar probe in two different lung cancer cell lines, CL1-0 and CL1-5 with distinct invasiveness derived from the same parental cell line. Among the identified sialylated proteins, epidermal growth factor receptor (EGFR) was chosen to understand the effect of sialylation on its function. We have determined the differences in glycan sequences of EGFR in both cells and observed higher sialylation and fucosylation of EGFR in CL1-5 than in CL1-0. Further study suggested that overexpression of sialyltransferases in CL1-5 and α1,3-fucosyltransferases (FUT4 or FUT6) in CL1-5 and A549 cells would suppress EGFR dimerization and phosphorylation upon EGF treatment, as compared to the control and CL1-0 cells. Such modulating effects on EGFR dimerization were further confirmed by sialidase or fucosidase treatment. Thus, increasing sialylation and fucosylation could attenuate EGFR-mediated invasion of lung cancer cells. However, incorporation of the core fucose by α1,6-fucosylatransferase (FUT8) would promote EGFR dimerization and phosphorylation.


Assuntos
Receptores ErbB/química , Receptores ErbB/metabolismo , Neoplasias Pulmonares/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Linhagem Celular Tumoral , Primers do DNA/genética , Dimerização , Ativação Enzimática , Receptores ErbB/genética , Fucose/química , Fucose/metabolismo , Glicosilação , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Invasividade Neoplásica/fisiopatologia , Estrutura Quaternária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ácidos Siálicos/química , Ácidos Siálicos/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
14.
Int J Proteomics ; 2010: 726968, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-22084680

RESUMO

We studied the seminal vesicle secretion (SVS) of transgenic mice by using one-dimensional gel electrophoresis combined with LTQ-FT ICR MS analysis to explore protein expression profiles. Using unique peptide numbers as a cut-off criterion, 79 proteins were identified with high confidence in the SVS proteome. Label-free quantitative analysis was performed by using the IDEAL_Q software program. Furthermore, western blot assays were performed to validate the expression of seminal vesicle proteins. Sulfhydryl oxidase 1, glia-derived nexin, SVS1, SVS3, and SVS6 showed overexpression in SVS during cancer development. With high sequence similarity to human semenogelin, SVS2 is the most abundance protein in SVS and is dramatically decreased during the tumorigenic process. Our results indicate that these protein candidates could serve as potential targets for monitoring seminal vesicle carcinoma. Moreover, this information can provide clues for investigating seminal vesicle secretion-containing seminal plasma for related human diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA