Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Adv Sci (Weinh) ; 10(14): e2206812, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36949364

RESUMO

A critical barrier to effective cancer therapy is the improvement of drug selectivity, toxicity, and reduced recurrence of tumors expanded from tumor-initiating stem-like cells (TICs). The aim is to identify circulating tumor cell (CTC)-biomarkers and to identify an effective combination of TIC-specific, repurposed federal drug administration (FDA)-approved drugs. Three different types of high-throughput screens targeting the TIC population are employed: these include a CD133 (+) cell viability screen, a NANOG expression screen, and a drug combination screen. When combined in a refined secondary screening approach that targets Nanog expression with the same FDA-approved drug library, histone deacetylase (HDAC) inhibitor(s) combined with all-trans retinoic acid (ATRA) demonstrate the highest efficacy for inhibition of TIC growth in vitro and in vivo. Addition of immune checkpoint inhibitor further decreases recurrence and extends PDX mouse survival. RNA-seq analysis of TICs reveals that combined drug treatment reduces many Toll-like receptors (TLR) and stemness genes through repression of the lncRNA MIR22HG. This downregulation induces PTEN and TET2, leading to loss of the self-renewal property of TICs. Thus, CTC biomarker analysis would predict the prognosis and therapy response to this drug combination. In general, biomarker-guided stratification of HCC patients and TIC-targeted therapy should eradicate TICs to extend HCC patient survival.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Células Neoplásicas Circulantes , Camundongos , Animais , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Linhagem Celular Tumoral , Tretinoína/uso terapêutico
2.
iScience ; 26(3): 106254, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36949755

RESUMO

Chemoresistance and plasticity of tumor-initiating stem-like cells (TICs) promote tumor recurrence and metastasis. The gut-originating endotoxin-TLR4-NANOG oncogenic axis is responsible for the genesis of TICs. This study investigated mechanisms as to how TICs arise through transcriptional, epigenetic, and post-transcriptional activation of oncogenic TLR4 pathways. Here, we expressed constitutively active TLR4 (caTLR4) in mice carrying pLAP-tTA or pAlb-tTA, under a tetracycline withdrawal-inducible system. Liver progenitor cell induction accelerated liver tumor development in caTLR4-expressing mice. Lentiviral shRNA library screening identified histone H3K4 methylase SETD7 as central to activation of TLR4. SETD7 combined with hypoxia induced TLR4 through HIF2 and NOTCH. LIN28 post-transcriptionally stabilized TLR4 mRNA via de-repression of let-7 microRNA. These results supported a LIN28-TLR4 pathway for the development of HCCs in a hypoxic microenvironment. These findings not only advance our understanding of molecular mechanisms responsible for TIC generation in HCC, but also represent new therapeutic targets for the treatment of HCC.

3.
Mol Cancer Res ; 21(2): 155-169, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36287175

RESUMO

Synergism between obesity and virus infection promotes the development of B-cell lymphoma. In this study, we tested whether obesity-associated endotoxin release induced activation-induced cytidine deaminase (AID). TLR4 activation in turn caused c-JUN-dependent and STAT3-dependent translocations of MYC loci to suppress transactivation of CD95/FAS. We used viral nucleocapside Core transgenic (Tg) mice fed alcohol Western diet to determine whether oncogenesis arising from obesity and chronic virus infection occurred through TLR4-c-JUN-STAT3 pathways. Our results showed B cell-specific, c-Jun and/or Stat3 disruption reduced the incidence of splenomegaly in these mice. AID-dependent t(8;14) translocation was observed between the Ig promoter and MYC loci. Comparison with human B cells showed MYC-immunoglobulin (Ig) translocations after virus infection with lipopolysaccharide stimulation. Accordingly, human patients with lymphoma with virus infections and obesity showed a 40% incidence of MYC-Ig translocations. Thus, obesity and virus infection promote AID-mediated translocation between the Ig promoter and MYC through the TLR4-c-JUN axis, resulting in lymphoproliferation. Taken together, preventative treatment targeting either c-JUN and/or STAT3 may be effective strategies to prevent tumor development. IMPLICATIONS: Obesity increases gut-derived endotoxin which induces Toll-like receptor-mediated MYC-Ig translocation via c-JUN-STAT3, leading to lymphoproliferation.


Assuntos
Endotoxinas , Receptor 4 Toll-Like , Humanos , Camundongos , Animais , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Endotoxinas/metabolismo , Imunoglobulinas/metabolismo , Camundongos Transgênicos , Linfócitos B , Translocação Genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
4.
Int J Med Sci ; 19(6): 1013-1022, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35813301

RESUMO

Single nucleotide polymorphisms (SNPs) of tissue inhibitor of metalloproteinases-3 (TIMP-3) have been revealed to be related to various cancers. To date, no study explores the relationships between TIMP-3 polymorphisms and uterine cervical cancer. The purposes of this research were to investigate the associations among genetic variants of TIMP-3 and development and clinicopathological factors of uterine cervical cancer, and patient 5 years survival in Taiwanese women. The study included 123 patients with invasive cancer and 97 with precancerous lesions of uterine cervix, and 300 control women. TIMP-3 polymorphisms rs9619311, rs9862 and rs11547635 were checked and their genotypic distributions were determined by real-time polymerase chain reaction. It showed that women with genotypes CT/TT in rs9862 were found to display a higher risk of developing cervical cancer with moderate and poor cell differentiation. Moreover, it revealed that cervical cancer patients carrying genotypes CC in rs9619311 exhibited a poorer 5 years survival, as compared to those with TT/TC in Taiwanese women, using univariate analysis. In addition, pelvic lymph node metastasis was determined to independently predict 5 years survival in cervical cancer patients using multivariate analysis. Conclusively, TIMP-3 SNPs polymorphisms rs9619311 are related to cervical patient survival in Taiwanese women.


Assuntos
Neoplasias do Colo do Útero , Feminino , Predisposição Genética para Doença/genética , Humanos , Polimorfismo de Nucleotídeo Único/genética , Taiwan/epidemiologia , Inibidor Tecidual de Metaloproteinase-3/genética , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/mortalidade , Neoplasias do Colo do Útero/patologia
5.
iScience ; 25(6): 104325, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35601917

RESUMO

Metabolic syndrome is associated with obesity, insulin resistance, and the risk of cancer. We tested whether oncogenic transcription factor c-JUN metabolically reprogrammed cells to induce obesity and cancer by reduction of glucose uptake, with promotion of the stemness phenotype leading to malignant transformation. Liquid alcohol, high-cholesterol, fat diet (HCFD), and isocaloric dextrin were fed to wild-type or experimental mice for 12 months to promote hepatocellular carcinoma (HCC). We demonstrated 40% of mice developed liver tumors after chronic HCFD feeding. Disruption of liver-specific c-Jun reduced tumor incidence 4-fold and improved insulin sensitivity. Overexpression of c-JUN downregulated RICTOR transcription, leading to inhibition of the mTORC2/AKT and glycolysis pathways. c-JUN inhibited GLUT1, 2, and 3 transactivation to suppress glucose uptake. Silencing of RICTOR or c-JUN overexpression promoted self-renewal ability. Taken together, c-JUN inhibited mTORC2 via RICTOR downregulation and inhibited glucose uptake via downregulation of glucose intake, leading to self-renewal and obesity.

6.
Front Cell Dev Biol ; 10: 890419, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35602596

RESUMO

TEAD4 (TEA Domain Transcription Factor 4) is well recognized as the DNA-anchor protein of YAP transcription complex, which is modulated by Hippo, a highly conserved pathway in Metazoa that controls organ size through regulating cell proliferation and apoptosis. To acquire full transcriptional activity, TEAD4 requires co-activator, YAP (Yes-associated protein) or its homolog TAZ (transcriptional coactivator with PDZ-binding motif) the signaling hub that relays the extracellular stimuli to the transcription of target genes. Growing evidence suggests that TEAD4 also exerts its function in a YAP-independent manner through other signal pathways. Although TEAD4 plays an essential role in determining that differentiation fate of the blastocyst, it also promotes tumorigenesis by enhancing metastasis, cancer stemness, and drug resistance. Upregulation of TEAD4 has been reported in several cancers, including colon cancer, gastric cancer, breast cancer, and prostate cancer and serves as a valuable prognostic marker. Recent studies show that TEAD4, but not other members of the TEAD family, engages in regulating mitochondrial dynamics and cell metabolism by modulating the expression of mitochondrial- and nuclear-encoded electron transport chain genes. TEAD4's functions including oncogenic activities are tightly controlled by its subcellular localization. As a predominantly nuclear protein, its cytoplasmic translocation is triggered by several signals, such as osmotic stress, cell confluency, and arginine availability. Intriguingly, TEAD4 is also localized in mitochondria, although the translocation mechanism remains unclear. In this report, we describe the current understanding of TEAD4 as an oncogene, epigenetic regulator and mitochondrial modulator. The contributing mechanisms will be discussed.

7.
J Chin Med Assoc ; 85(2): 259-262, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34974508

RESUMO

Total implantable venous access port (TIVAP) by cephalic vein cutdown (CVCD) is one of the first procedures surgery residents can be performed independently under supervision. There is currently a lack of affordable simulators for teaching and assessing TIVAP competency to improve patient safety. A panel of 10 experts divided the TIVAP by CVCD procedure into 9 steps. A homemade, low-cost ($3 USD) simulator was then designed for practicing standardized procedural steps in the context of a simulation-based mastery learning course. Residents were given a simulator for at-home practice and completed a survey evaluating the simulator and their learning experience. Twenty-eight first-year surgery residents participated in the course and completed the survey. They were highly satisfied with the simulator (mean score = 8.7 of 10) and generally agreed with its anatomical appearance and functional fidelity. They also appreciated the educational value of using this simulator to learn and practice basic techniques and procedural steps. Our novel, homemade simulator of CVCD TIVAP implantation is a cost-effective way of achieving procedural competence of a basic operation for inexperienced surgery residents. We envision the same principle can be applied to other procedures to enhance resident education.


Assuntos
Cateterismo Venoso Central/normas , Competência Clínica , Treinamento por Simulação , Dispositivos de Acesso Vascular , Venostomia/educação , Humanos , Inquéritos e Questionários
8.
Int J Mol Sci ; 22(24)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34948229

RESUMO

Increasing evidence suggests that tumor development requires not only oncogene/tumor suppressor mutations to drive the growth, survival, and metastasis but also metabolic adaptations to meet the increasing energy demand for rapid cellular expansion and to cope with the often nutritional and oxygen-deprived microenvironment. One well-recognized strategy is to shift the metabolic flow from oxidative phosphorylation (OXPHOS) or respiration in mitochondria to glycolysis or fermentation in cytosol, known as Warburg effects. However, not all cancer cells follow this paradigm. In the development of prostate cancer, OXPHOS actually increases as compared to normal prostate tissue. This is because normal prostate epithelial cells divert citrate in mitochondria for the TCA cycle to the cytosol for secretion into seminal fluid. The sustained level of OXPHOS in primary tumors persists in progression to an advanced stage. As such, targeting OXPHOS and mitochondrial activities in general present therapeutic opportunities. In this review, we summarize the recent findings of the key regulators of the OXPHOS pathway in prostate cancer, ranging from transcriptional regulation, metabolic regulation to genetic regulation. Moreover, we provided a comprehensive update of the current status of OXPHOS inhibitors for prostate cancer therapy. A challenge of developing OXPHOS inhibitors is to selectively target cancer mitochondria and spare normal counterparts, which is also discussed.


Assuntos
Antineoplásicos/uso terapêutico , Sistemas de Liberação de Medicamentos , Mitocôndrias , Fosforilação Oxidativa/efeitos dos fármacos , Neoplasias da Próstata , Transdução de Sinais , Ciclo do Ácido Cítrico/efeitos dos fármacos , Ciclo do Ácido Cítrico/genética , Humanos , Masculino , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
9.
Cancers (Basel) ; 13(14)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34298755

RESUMO

Arginine is an amino acid critically involved in multiple cellular processes including the syntheses of nitric oxide and polyamines, and is a direct activator of mTOR, a nutrient-sensing kinase strongly implicated in carcinogenesis. Yet, it is also considered as a non- or semi-essential amino acid, due to normal cells' intrinsic ability to synthesize arginine from citrulline and aspartate via ASS1 (argininosuccinate synthase 1) and ASL (argininosuccinate lyase). As such, arginine can be used as a dietary supplement and its depletion as a therapeutic strategy. Strikingly, in over 70% of tumors, ASS1 transcription is suppressed, rendering the cells addicted to external arginine, forming the basis of arginine-deprivation therapy. In this review, we will discuss arginine as a signaling metabolite, arginine's role in cancer metabolism, arginine as an epigenetic regulator, arginine as an immunomodulator, and arginine as a therapeutic target. We will also provide a comprehensive summary of ADI (arginine deiminase)-based arginine-deprivation preclinical studies and an update of clinical trials for ADI and arginase. The different cell killing mechanisms associated with various cancer types will also be described.

10.
Theranostics ; 11(15): 7527-7545, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34158865

RESUMO

Rationale: One of the most common metabolic defects in cancers is the deficiency in arginine synthesis, which has been exploited therapeutically. Yet, challenges remain, and the mechanisms of arginine-starvation induced killing are largely unclear. Here, we sought to demonstrate the underlying mechanisms by which arginine starvation-induced cell death and to develop a dietary arginine-restriction xenograft model to study the in vivo effects. Methods: Multiple castration-resistant prostate cancer cell lines were treated with arginine starvation followed by comprehensive analysis of microarray, RNA-seq and ChIP-seq were to identify the molecular and epigenetic pathways affected by arginine starvation. Metabolomics and Seahorse Flux analyses were used to determine the metabolic profiles. A dietary arginine-restriction xenograft mouse model was developed to assess the effects of arginine starvation on tumor growth and inflammatory responses. Results: We showed that arginine starvation coordinately and epigenetically suppressed gene expressions, including those involved in oxidative phosphorylation and DNA repair, resulting in DNA damage, chromatin-leakage and cGAS-STING activation, accompanied by the upregulation of type I interferon response. We further demonstrated that arginine starvation-caused depletion of α-ketoglutarate and inactivation of histone demethylases are the underlying causes of epigenetic silencing. Significantly, our dietary arginine-restriction model showed that arginine starvation suppressed prostate cancer growth in vivo, with evidence of enhanced interferon responses and recruitment of immune cells. Conclusions: Arginine-starvation induces tumor cell killing by metabolite depletion and epigenetic silencing of metabolic genes, leading to DNA damage and chromatin leakage. The resulting cGAS-STING activation may further enhance these killing effects.


Assuntos
Arginina/deficiência , Cromatina/metabolismo , Reparo do DNA , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Nucleotidiltransferases/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Cromatina/genética , Cromatina/patologia , Humanos , Masculino , Proteínas de Membrana/genética , Proteínas de Neoplasias/genética , Nucleotidiltransferases/genética , Células PC-3 , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia
11.
Nat Commun ; 12(1): 2398, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33893278

RESUMO

Arginine plays diverse roles in cellular physiology. As a semi-essential amino acid, arginine deprivation has been used to target cancers with arginine synthesis deficiency. Arginine-deprived cancer cells exhibit mitochondrial dysfunction, transcriptional reprogramming and eventual cell death. In this study, we show in prostate cancer cells that arginine acts as an epigenetic regulator to modulate histone acetylation, leading to global upregulation of nuclear-encoded oxidative phosphorylation (OXPHOS) genes. TEAD4 is retained in the nucleus by arginine, enhancing its recruitment to the promoter/enhancer regions of OXPHOS genes and mediating coordinated upregulation in a YAP1-independent but mTOR-dependent manner. Arginine also activates the expression of lysine acetyl-transferases and increases overall levels of acetylated histones and acetyl-CoA, facilitating TEAD4 recruitment. Silencing of TEAD4 suppresses OXPHOS functions and prostate cancer cell growth in vitro and in vivo. Given the strong correlation of TEAD4 expression and prostate carcinogenesis, targeting TEAD4 may be beneficially used to enhance arginine-deprivation therapy and prostate cancer therapy.


Assuntos
Arginina/farmacologia , Proteínas de Ligação a DNA/genética , Epigênese Genética/efeitos dos fármacos , Epigenômica/métodos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas Musculares/genética , Fosforilação Oxidativa/efeitos dos fármacos , Neoplasias da Próstata/genética , Fatores de Transcrição/genética , Animais , Arginina/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Musculares/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/metabolismo
12.
Nat Commun ; 11(1): 3084, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32555153

RESUMO

Tumor-initiating stem-like cells (TICs) are defective in maintaining asymmetric cell division and responsible for tumor recurrence. Cell-fate-determinant molecule NUMB-interacting protein (TBC1D15) is overexpressed and contributes to p53 degradation in TICs. Here we identify TBC1D15-mediated oncogenic mechanisms and tested the tumorigenic roles of TBC1D15 in vivo. We examined hepatocellular carcinoma (HCC) development in alcohol Western diet-fed hepatitis C virus NS5A Tg mice with hepatocyte-specific TBC1D15 deficiency or expression of non-phosphorylatable NUMB mutations. Liver-specific TBC1D15 deficiency or non-p-NUMB expression reduced TIC numbers and HCC development. TBC1D15-NuMA1 association impaired asymmetric division machinery by hijacking NuMA from LGN binding, thereby favoring TIC self-renewal. TBC1D15-NOTCH1 interaction activated and stabilized NOTCH1 which upregulated transcription of NANOG essential for TIC expansion. TBC1D15 activated three novel oncogenic pathways to promote self-renewal, p53 loss, and Nanog transcription in TICs. Thus, this central regulator could serve as a potential therapeutic target for treatment of HCC.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Células-Tronco Neoplásicas/citologia , Receptor Notch1/metabolismo , Adulto , Idoso , Animais , Carcinogênese/patologia , Carcinoma Hepatocelular/metabolismo , Divisão Celular , Linhagem Celular Tumoral , Transferência Ressonante de Energia de Fluorescência , Hepacivirus , Hepatócitos/citologia , Humanos , Fígado/metabolismo , Neoplasias Hepáticas/metabolismo , Camundongos , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Fosforilação , Receptores Notch/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo
13.
Nat Commun ; 8: 13882, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-28067225

RESUMO

B-cell infection by hepatitis C virus (HCV) has been a controversial topic. To examine whether HCV has a genetically determined lymphotropism through a co-receptor specific for the infection by lymphotropic HCV, we established an infectious clone and chimeric virus of hepatotropic and lymphotropic HCV strains derived from an HCV-positive B-cell lymphoma. The viral envelope and 5'-UTR sequences of the lymphotropic HCV strain were responsible for the lymphotropism. Silencing of the virus sensor, RIGI, or overexpression of microRNA-122 promoted persistent viral replication in B cells. By cDNA library screening, we identified an immune cell-specific, co-stimulatory receptor B7.2 (CD86) as a co-receptor of lymphotropic HCV. Infection of B cells by HCV inhibited the recall reaction to antigen stimulation. Together, a co-receptor B7.2 enabled lymphotropic HCV to infect memory B cells, leading to inhibition of memory B-cell function and persistent HCV infection in HCV-infected hosts.


Assuntos
Linfócitos B/virologia , Antígeno B7-2/genética , Hepacivirus/imunologia , Interações Hospedeiro-Patógeno , Proteínas do Envelope Viral/genética , Tropismo Viral/imunologia , Linfócitos B/imunologia , Antígeno B7-2/imunologia , Linhagem Celular Tumoral , Proteína DEAD-box 58/antagonistas & inibidores , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/imunologia , Regulação da Expressão Gênica , Biblioteca Gênica , Células HEK293 , Células Hep G2 , Humanos , Memória Imunológica , Helicase IFIH1 Induzida por Interferon/genética , Helicase IFIH1 Induzida por Interferon/imunologia , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , MicroRNAs/imunologia , Ligação Proteica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores Imunológicos , Transdução de Sinais , Proteínas do Envelope Viral/imunologia , Replicação Viral
14.
Sci Rep ; 6: 25740, 2016 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-27169898

RESUMO

Gout is characterized by the monosodium urate monohydrate (MSU)-induced arthritis. Alpha kinase-1 (ALPK1) has shown to be associated with MSU-induced inflammation and gout. Here, we used bioinformatics, proteomics, cell models, and twenty in vitro human assays to clarify some of its role in the inflammatory response to MSU. We found myosin IIA to be a frequent interacting protein partner of ALPK1, binding to its N-terminal and forming a protein complex with calmodulin and F-actin, and that MSU-induced ALPK1 phosphorylated the myosin IIA. A knockdown of endogenous ALPK1 or myosin IIA significantly reduced the MSU-induced secretion of tumour necrosis factor (TNF)-α. Furthermore, all gouty patients expressed higher basal protein levels of ALPK1, myosin IIA, and plasma TNF-α, however those medicated with colchicine has shown reduced myosin IIA and TNF-α but not ALPK1. The findings suggest ALPK1 is a kinase that participates in the regulation of Golgi-derived TNF-α trafficking through myosin IIA phosphorylation in the inflammation of gout. This novel pathway could be blocked at the level of myosin by colchicine in gout treatment.


Assuntos
Gota/metabolismo , Miosina não Muscular Tipo IIA/metabolismo , Proteínas Quinases/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Colchicina/farmacologia , Citocinas/metabolismo , Regulação para Baixo/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Vetores Genéticos/metabolismo , Gota/sangue , Células HEK293 , Humanos , Modelos Biológicos , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , Proteínas Quinases/química , Estrutura Secundária de Proteína , Fator de Necrose Tumoral alfa/sangue , Ácido Úrico/farmacologia
15.
Cell Metab ; 23(1): 206-19, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26724859

RESUMO

Stem cell markers, including NANOG, have been implicated in various cancers; however, the functional contribution of NANOG to cancer pathogenesis has remained unclear. Here, we show that NANOG is induced by Toll-like receptor 4 (TLR4) signaling via phosphorylation of E2F1 and that downregulation of Nanog slows down hepatocellular carcinoma (HCC) progression induced by alcohol western diet and hepatitis C virus protein in mice. NANOG ChIP-seq analyses reveal that NANOG regulates the expression of genes involved in mitochondrial metabolic pathways required to maintain tumor-initiating stem-like cells (TICs). NANOG represses mitochondrial oxidative phosphorylation (OXPHOS) genes, as well as ROS generation, and activates fatty acid oxidation (FAO) to support TIC self-renewal and drug resistance. Restoration of OXPHOS activity and inhibition of FAO renders TICs susceptible to a standard care chemotherapy drug for HCC, sorafenib. This study provides insights into the mechanisms of NANOG-mediated generation of TICs, tumorigenesis, and chemoresistance through reprogramming of mitochondrial metabolism.


Assuntos
Carcinogênese/metabolismo , Carcinoma Hepatocelular/metabolismo , Proteínas de Homeodomínio/fisiologia , Neoplasias Hepáticas Experimentais/metabolismo , Células-Tronco Neoplásicas/metabolismo , Animais , Carcinogênese/patologia , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Autorrenovação Celular , Resistencia a Medicamentos Antineoplásicos , Fator de Transcrição E2F1/metabolismo , Ácidos Graxos , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Metabolismo dos Lipídeos , Neoplasias Hepáticas Experimentais/patologia , Mitocôndrias Hepáticas/metabolismo , Proteína Homeobox Nanog , Oxirredução , Fosforilação Oxidativa , Estresse Oxidativo , Fosforilação , Processamento de Proteína Pós-Traducional , Espécies Reativas de Oxigênio/metabolismo , Ativação Transcricional
16.
Gastroenterology ; 150(3): 707-19, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26582088

RESUMO

BACKGROUND & AIMS: Obesity and alcohol consumption contribute to steatohepatitis, which increases the risk for hepatitis C virus (HCV)-associated hepatocellular carcinomas (HCCs). Mouse hepatocytes that express HCV-NS5A in liver up-regulate the expression of Toll-like receptor 4 (TLR4), and develop liver tumors containing tumor-initiating stem-like cells (TICs) that express NANOG. We investigated whether the TLR4 signals to NANOG to promote the development of TICs and tumorigenesis in mice placed on a Western diet high in cholesterol and saturated fat (HCFD). METHODS: We expressed HCV-NS5A from a transgene (NS5A Tg) in Tlr4-/- (C57Bl6/10ScN), and wild-type control mice. Mice were fed a HCFD for 12 months. TICs were identified and isolated based on being CD133+, CD49f+, and CD45-. We obtained 142 paraffin-embedded sections of different stage HCCs and adjacent nontumor areas from the same patients, and performed gene expression, immunofluorescence, and immunohistochemical analyses. RESULTS: A higher proportion of NS5A Tg mice developed liver tumors (39%) than mice that did not express HCV NS5A after the HCFD (6%); only 9% of Tlr4-/- NS5A Tg mice fed HCFD developed liver tumors. Livers from NS5A Tg mice fed the HCFD had increased levels of TLR4, NANOG, phosphorylated signal transducer and activator of transcription (pSTAT3), and TWIST1 proteins, and increases in Tlr4, Nanog, Stat3, and Twist1 messenger RNAs. In TICs from NS5A Tg mice, NANOG and pSTAT3 directly interact to activate expression of Twist1. Levels of TLR4, NANOG, pSTAT3, and TWIST were increased in HCC compared with nontumor tissues from patients. CONCLUSIONS: HCFD and HCV-NS5A together stimulated TLR4-NANOG and the leptin receptor (OB-R)-pSTAT3 signaling pathways, resulting in liver tumorigenesis through an exaggerated mesenchymal phenotype with prominent Twist1-expressing TICs.


Assuntos
Transformação Celular Neoplásica/metabolismo , Proteínas de Homeodomínio/metabolismo , Neoplasias Hepáticas/metabolismo , Fígado/metabolismo , Células-Tronco Neoplásicas/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Nucleares/metabolismo , Fator de Transcrição STAT3/metabolismo , Receptor 4 Toll-Like/metabolismo , Proteína 1 Relacionada a Twist/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Apolipoproteínas E/genética , Linhagem Celular , Movimento Celular , Autorrenovação Celular , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Dieta Hiperlipídica , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal , Feminino , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/genética , Humanos , Fígado/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Proteína Homeobox Nanog , Células-Tronco Neoplásicas/patologia , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Proteínas Nucleares/genética , Fenótipo , Fosforilação , Regiões Promotoras Genéticas , Fator de Transcrição STAT3/genética , Transdução de Sinais , Fatores de Tempo , Receptor 4 Toll-Like/deficiência , Receptor 4 Toll-Like/genética , Proteína 1 Relacionada a Twist/genética , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
17.
Proc Natl Acad Sci U S A ; 112(34): 10611-6, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26253764

RESUMO

Antibodies have been developed as therapeutic agents for the treatment of cancer, infection, and inflammation. In addition to binding activity toward the target, antibodies also exhibit effector-mediated activities through the interaction of the Fc glycan and the Fc receptors on immune cells. To identify the optimal glycan structures for individual antibodies with desired activity, we have developed an effective method to modify the Fc-glycan structures to a homogeneous glycoform. In this study, it was found that the biantennary N-glycan structure with two terminal alpha-2,6-linked sialic acids is a common and optimized structure for the enhancement of antibody-dependent cell-mediated cytotoxicity, complement-dependent cytotoxicity, and antiinflammatory activities.


Assuntos
Fragmentos Fc das Imunoglobulinas/química , Imunoglobulina G/química , Polissacarídeos/química , Rituximab/química , Acetilglucosamina/química , Acetilglucosamina/imunologia , Animais , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/uso terapêutico , Citotoxicidade Celular Dependente de Anticorpos , Proteínas de Bactérias/metabolismo , Bacteroides fragilis/enzimologia , Linhagem Celular Tumoral , Feminino , Células HEK293 , Humanos , Fragmentos Fc das Imunoglobulinas/imunologia , Imunoglobulina G/imunologia , Linfoma de Células B/patologia , Camundongos , Camundongos Endogâmicos BALB C , Neuraminidase/metabolismo , Infecções por Orthomyxoviridae/prevenção & controle , Engenharia de Proteínas , Receptores de IgG/imunologia , Rituximab/imunologia , Ácidos Siálicos/química , Ácidos Siálicos/imunologia , Streptococcus pyogenes/enzimologia , Relação Estrutura-Atividade , Trastuzumab/química , Trastuzumab/imunologia , alfa-L-Fucosidase/metabolismo
18.
Hepatology ; 62(5): 1466-79, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26174965

RESUMO

UNLABELLED: Stem cell populations are maintained through self-renewing divisions in which one daughter cell commits to a particular fate whereas the other retains the multipotent characteristics of its parent. The NUMB, a tumor suppressor, in conjunction with another tumor-suppressor protein, p53, preserves this property and acts as a barrier against deregulated expansion of tumor-associated stem cells. In this context, NUMB-p53 interaction plays a crucial role to maintain the proper homeostasis of both stem cells, as well as differentiated cells. Because the molecular mechanism governing the assembly and stability of the NUMB-p53 interaction/complex are poorly understood, we tried to identify the molecule(s) that govern this process. Using cancer cell lines, tumor-initiating cells (TICs) of liver, the mouse model, and clinical samples, we identified that phosphorylations of NUMB destabilize p53 and promote self-renewal of TICs in a pluripotency-associated transcription factor NANOG-dependent manner. NANOG phosphorylates NUMB by atypical protein kinase C zeta (aPKCζ), through the direct induction of Aurora A kinase (AURKA) and the repression of an aPKCζ inhibitor, lethal (2) giant larvae. By radioactivity-based kinase activity assays, we showed that NANOG enhances kinase activities of both AURKA and aPKCζ, an important upstream process for NUMB phosphorylation. Phosphorylation of NUMB by aPKCζ destabilizes the NUMB-p53 interaction and p53 proteolysis and deregulates self-renewal in TICs. CONCLUSION: Post-translational modification of NUMB by the NANOG-AURKA-aPKCζ pathway is an important event in TIC self-renewal and tumorigenesis. Hence, the NANOG-NUMB-p53 signaling axis is an important regulatory pathway for TIC events in TIC self-renewal and liver tumorigenesis, suggesting a therapeutic strategy by targeting NUMB phosphorylation. Further in-depth in vivo and clinical studies are warranted to verify this suggestion.


Assuntos
Proteínas de Homeodomínio/fisiologia , Neoplasias Hepáticas/patologia , Proteínas de Membrana/metabolismo , Células-Tronco Neoplásicas/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Proteína Supressora de Tumor p53/fisiologia , Antígeno AC133 , Animais , Antígenos CD/análise , Aurora Quinase A/genética , Glicoproteínas/análise , Células Hep G2 , Humanos , Camundongos , Proteína Homeobox Nanog , Peptídeos/análise , Fosforilação , Proteína Quinase C/fisiologia , Processamento de Proteína Pós-Traducional , Estabilidade Proteica , Proteína Supressora de Tumor p53/química
19.
J Exp Med ; 212(3): 333-49, 2015 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-25732306

RESUMO

Pancreatic cancer has an extremely high mortality rate due to its aggressive metastatic nature. Resolving the underlying mechanisms will be crucial for treatment. Here, we found that overexpression of IL-17B receptor (IL-17RB) strongly correlated with postoperative metastasis and inversely correlated with progression-free survival in pancreatic cancer patients. Consistently, results from ex vivo experiments further validated that IL-17RB and its ligand, IL-17B, plays an essential role in pancreatic cancer metastasis and malignancy. Signals from IL-17B-IL-17RB activated CCL20/CXCL1/IL-8/TFF1 chemokine expressions via the ERK1/2 pathway to promote cancer cell invasion, macrophage and endothelial cell recruitment at primary sites, and cancer cell survival at distant organs. Treatment with a newly derived monoclonal antibody against IL-17RB blocked tumor metastasis and promoted survival in a mouse xenograft model. These findings not only illustrate a key mechanism underlying the highly aggressive characteristics of pancreatic cancer but also provide a practical approach to tackle this disease.


Assuntos
Anticorpos Monoclonais/farmacologia , Quimiocinas/metabolismo , Interleucina-17/imunologia , Interleucina-17/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Receptores de Interleucina-17/metabolismo , Animais , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Interleucina-17/genética , Masculino , Camundongos SCID , Pessoa de Meia-Idade , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/mortalidade , Receptores de Interleucina-17/genética , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Hepatol Int ; 8(3): 330-8, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26202636

RESUMO

This review article discusses the importance and oncogenic signaling pathways of tumor-initiating cells (TICs) in several etiologies of hepatocellular carcinomas (HCCs) induced by hepatitis C virus (HCV), alcohol, obesity and/or chemicals. Stem cells may be present in cancer tissue, and a hierarchy of cells is formed, as is the case for normal tissue. Tumor formation, growth and propagation are maintained by a small proportion of cells with stem cell-like properties. TICs are present in alcohol-fed HCV transgenic mice, diethylnitrosamine/phenobarbital-treated mice (chemical carcinogenesis) and Spnb2 +/- mice (defective TGF-ß signal). Alcohol/obesity-associated endotoxemia induces the stem cell marker Nanog through TLR4 signaling to generate TICs and liver tumors in several HCC models. The oncogenic pathway (such as the STAT3 and TLR4-NANOG pathway) and mechanism of generation of TICs of HCCs associated with HCV, alcohol and obesity are discussed. Understanding the molecular stemness signaling and cellular hierarchy and defining key TIC-specific genes will accelerate the development of novel biomarkers and treatment strategies. This review highlights recent advances in understanding the pathogenesis of liver TICs and discusses unanswered questions about the concept of liver TICs. (This project was supported by NIH grants 1R01AA018857 and P50AA11999).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA