Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Exp Med ; 220(8)2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37158982

RESUMO

Type I interferons are important antiviral cytokines, but prolonged interferon production is detrimental to the host. The TLR3-driven immune response is crucial for mammalian antiviral immunity, and its intracellular localization determines induction of type I interferons; however, the mechanism terminating TLR3 signaling remains obscure. Here, we show that the E3 ubiquitin ligase ZNRF1 controls TLR3 sorting into multivesicular bodies/lysosomes to terminate signaling and type I interferon production. Mechanistically, c-Src kinase activated by TLR3 engagement phosphorylates ZNRF1 at tyrosine 103, which mediates K63-linked ubiquitination of TLR3 at lysine 813 and promotes TLR3 lysosomal trafficking and degradation. ZNRF1-deficient mice and cells are resistant to infection by encephalomyocarditis virus and SARS-CoV-2 because of enhanced type I interferon production. However, Znrf1-/- mice have exacerbated lung barrier damage triggered by antiviral immunity, leading to enhanced susceptibility to respiratory bacterial superinfections. Our study highlights the c-Src-ZNRF1 axis as a negative feedback mechanism controlling TLR3 trafficking and the termination of TLR3 signaling.


Assuntos
COVID-19 , Interferon Tipo I , Animais , Camundongos , Antivirais , SARS-CoV-2 , Receptor 3 Toll-Like , Genes src
2.
J Cell Biol ; 221(2)2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34935867

RESUMO

Cancer patients frequently develop chemotherapy-induced peripheral neuropathy (CIPN), a painful and long-lasting disorder with profound somatosensory deficits. There are no effective therapies to prevent or treat this disorder. Pathologically, CIPN is characterized by a "dying-back" axonopathy that begins at intra-epidermal nerve terminals of sensory neurons and progresses in a retrograde fashion. Calcium dysregulation constitutes a critical event in CIPN, but it is not known how chemotherapies such as paclitaxel alter intra-axonal calcium and cause degeneration. Here, we demonstrate that paclitaxel triggers Sarm1-dependent cADPR production in distal axons, promoting intra-axonal calcium flux from both intracellular and extracellular calcium stores. Genetic or pharmacologic antagonists of cADPR signaling prevent paclitaxel-induced axon degeneration and allodynia symptoms, without mitigating the anti-neoplastic efficacy of paclitaxel. Our data demonstrate that cADPR is a calcium-modulating factor that promotes paclitaxel-induced axon degeneration and suggest that targeting cADPR signaling provides a potential therapeutic approach for treating paclitaxel-induced peripheral neuropathy (PIPN).


Assuntos
Proteínas do Domínio Armadillo/metabolismo , Axônios/metabolismo , Cálcio/metabolismo , ADP-Ribose Cíclica/metabolismo , Proteínas do Citoesqueleto/metabolismo , Degeneração Neural/patologia , Paclitaxel/efeitos adversos , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/metabolismo , Animais , Canais de Cálcio/metabolismo , ADP-Ribose Cíclica/antagonistas & inibidores , Feminino , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Ratos Sprague-Dawley
3.
Front Immunol ; 12: 686060, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34211474

RESUMO

Toll-like receptor (TLR) signaling is critical for defense against pathogenic infection, as well as for modulating tissue development. Activation of different TLRs triggers common inflammatory responses such as cytokine induction. Here, we reveal differential impacts of TLR3 and TLR7 signaling on transcriptomic profiles in bone marrow-derived macrophages (BMDMs). Apart from self-regulation, TLR3, but not TLR7, induced expression of other TLRs, suggesting that TLR3 activation globally enhances innate immunity. Moreover, we observed diverse influences of TLR3 and TLR7 signaling on genes involved in methylation, caspase and autophagy pathways. We compared endogenous TLR3 and TLR7 by using CRISPR/Cas9 technology to knock in a dual Myc-HA tag at the 3' ends of mouse Tlr3 and Tlr7. Using anti-HA antibodies to detect endogenous tagged TLR3 and TLR7, we found that both TLRs display differential tissue expression and posttranslational modifications. C-terminal tagging did not impair TLR3 activity. However, it disrupted the interaction between TLR7 and myeloid differentiation primary response 88 (MYD88), the Tir domain-containing adaptor of TLR7, which blocked its downstream signaling necessary to trigger cytokine and chemokine expression. Our study demonstrates different properties for TLR3 and TLR7, and also provides useful mouse models for further investigation of these two RNA-sensing TLRs.


Assuntos
Epitopos/metabolismo , Macrófagos/metabolismo , Glicoproteínas de Membrana/fisiologia , Neurônios/metabolismo , Receptor 3 Toll-Like/fisiologia , Receptor 7 Toll-Like/fisiologia , Animais , Quimiocinas/metabolismo , Citocinas/metabolismo , Epitopos/imunologia , Feminino , Perfilação da Expressão Gênica , Imunidade Inata , Macrófagos/imunologia , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/fisiologia , Transdução de Sinais , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo
4.
Nat Neurosci ; 17(2): 240-7, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24441682

RESUMO

The neuron-specific transcription factor T-box brain 1 (TBR1) regulates brain development. Disruptive mutations in the TBR1 gene have been repeatedly identified in patients with autism spectrum disorders (ASDs). Here, we show that Tbr1 haploinsufficiency results in defective axonal projections of amygdalar neurons and the impairment of social interaction, ultrasonic vocalization, associative memory and cognitive flexibility in mice. Loss of a copy of the Tbr1 gene altered the expression of Ntng1, Cntn2 and Cdh8 and reduced both inter- and intra-amygdalar connections. These developmental defects likely impair neuronal activation upon behavioral stimulation, which is indicated by fewer c-FOS-positive neurons and lack of GRIN2B induction in Tbr1(+/-) amygdalae. We also show that upregulation of amygdalar neuronal activity by local infusion of a partial NMDA receptor agonist, d-cycloserine, ameliorates the behavioral defects of Tbr1(+/-) mice. Our study suggests that TBR1 is important in the regulation of amygdalar axonal connections and cognition.


Assuntos
Tonsila do Cerebelo/patologia , Axônios/patologia , Transtornos Cognitivos/genética , Transtornos Cognitivos/patologia , Proteínas de Ligação a DNA/deficiência , Animais , Antimetabólitos/uso terapêutico , Axônios/metabolismo , Caderinas/metabolismo , Transtornos Cognitivos/tratamento farmacológico , Contactina 2/metabolismo , Ciclosserina/uso terapêutico , Modelos Animais de Doenças , Comportamento Exploratório/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Fatores de Transcrição MEF2/metabolismo , Imageamento por Ressonância Magnética , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Proteínas do Tecido Nervoso/metabolismo , Netrinas , Análise de Sequência com Séries de Oligonucleotídeos , Técnicas de Cultura de Órgãos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas com Domínio T
5.
J Neurosci ; 33(28): 11479-93, 2013 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-23843519

RESUMO

Toll-like receptors (TLRs) recognize both pathogen- and danger-associated molecular patterns and induce innate immune responses. Some TLRs are expressed in neurons and regulate neurodevelopment and neurodegeneration. However, the downstream signaling pathways and effectors for TLRs in neurons are still controversial. In this report, we provide evidence that TLR7 negatively regulates dendrite growth through the canonical myeloid differentiation primary response gene 88 (Myd88)-c-Fos-interleukin (IL)-6 pathway. Although both TLR7 and TLR8 recognize single-stranded RNA (ssRNA), the results of quantitative reverse transcription-PCR suggested that TLR7 is the major TLR recognizing ssRNA in brains. In both in vitro cultures and in utero electroporation experiments, manipulation of TLR7 expression levels was sufficient to alter neuronal morphology, indicating the presence of intrinsic TLR7 ligands. Besides, the RNase A treatment that removed ssRNA in cultures promoted dendrite growth. We also found that the addition of ssRNA and synthetic TLR7 agonists CL075 and loxoribine, but not R837 (imiquimod), to cultured neurons specifically restricted dendrite growth via TLR7. These results all suggest that TLR7 negatively regulates neuronal differentiation. In cultured neurons, TLR7 activation induced IL-6 and TNF-α expression through Myd88. Using Myd88-, IL-6-, and TNF-α-deficient neurons, we then demonstrated the essential roles of Myd88 and IL-6, but not TNF-α, in the TLR7 pathway to restrict dendrite growth. In addition to neuronal morphology, TLR7 knockout also affects mouse behaviors, because young mutant mice ∼2 weeks of age exhibited noticeably lower exploratory activity in an open field. In conclusion, our study suggests that TLR7 negatively regulates dendrite growth and influences cognition in mice.


Assuntos
Dendritos/fisiologia , Regulação para Baixo/fisiologia , Inibidores do Crescimento/fisiologia , Interleucina-6/fisiologia , Glicoproteínas de Membrana/fisiologia , Fator 88 de Diferenciação Mieloide/fisiologia , Proteínas Proto-Oncogênicas c-fos/fisiologia , Transdução de Sinais/fisiologia , Receptor 7 Toll-Like/fisiologia , Animais , Células Cultivadas , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Gravidez
6.
J Clin Invest ; 121(12): 4820-37, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22105171

RESUMO

Inclusion body myopathy with Paget disease of bone and frontotemporal dementia (IBMPFD) is an autosomal dominant disorder characterized by progressive myopathy that is often accompanied by bone weakening and/or frontotemporal dementia. Although it is known to be caused by mutations in the gene encoding valosin-containing protein (VCP), the underlying disease mechanism remains elusive. Like IBMPFD, neurofibromatosis type 1 (NF1) is an autosomal dominant disorder. Neurofibromin, the protein encoded by the NF1 gene, has been shown to regulate synaptogenesis. Here, we show that neurofibromin and VCP interact and work together to control the density of dendritic spines. Certain mutations identified in IBMPFD and NF1 patients reduced the interaction between VCP and neurofibromin and impaired spinogenesis. The functions of neurofibromin and VCP in spinogenesis were shown to correlate with the learning disability and dementia phenotypes seen in patients with IBMPFD. Consistent with the previous finding that treatment with a statin rescues behavioral defects in Nf1(+/-) mice and providing further support for our hypothesis that there is crosstalk between neurofibromin and VCP, statin exposure neutralized the effect of VCP knockdown on spinogenesis in cultured hippocampal neurons. The data presented here demonstrate that there is a link between IBMPFD and NF1 and indicate a role for VCP in synapse formation.


Assuntos
Adenosina Trifosfatases/fisiologia , Proteínas de Ciclo Celular/fisiologia , Contratura/congênito , Dendritos/ultraestrutura , Demência Frontotemporal/genética , Miosite de Corpos de Inclusão/congênito , Neurofibromatose 1/genética , Neurofibromina 1/fisiologia , Oftalmoplegia/genética , Osteíte Deformante/genética , Animais , Região CA1 Hipocampal/ultraestrutura , Células Cultivadas/efeitos dos fármacos , Células Cultivadas/ultraestrutura , Colesterol/fisiologia , Contratura/genética , Contratura/patologia , Dendritos/metabolismo , Demência Frontotemporal/patologia , Humanos , Deficiências da Aprendizagem/tratamento farmacológico , Deficiências da Aprendizagem/genética , Lovastatina/farmacologia , Lovastatina/uso terapêutico , Camundongos , Camundongos Knockout , Mutação de Sentido Incorreto , Miosite de Corpos de Inclusão/genética , Miosite de Corpos de Inclusão/patologia , Neurofibromatose 1/patologia , Neurofibromatose 1/psicologia , Neurofibromina 1/deficiência , Neurofibromina 1/genética , Oftalmoplegia/patologia , Osteíte Deformante/patologia , Mutação Puntual , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Células Piramidais/efeitos dos fármacos , Células Piramidais/ultraestrutura , Ratos , Sinapses/ultraestrutura , Proteína com Valosina
7.
J Neurochem ; 114(5): 1381-92, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20534004

RESUMO

While neuronal activity regulates neurite outgrowth and branching, the details of the underlying mechanisms are still largely unclear. This study investigated the effect of the glutamate receptors on neuritogenesis using cultured hippocampal neurons. At 3-4 days in vitro, NMDA treatment promoted axon branching but not primary axon extension. In contrast, blockade of the NMDA receptor (NMDAR) by AP5 treatment enhanced primary axon extension. NMDAR activation also increased dendrite number and total dendrite length. These results suggest that NMDAR controls axon and dendrite morphogenesis. A previous study demonstrated that knockdown of the zinc finger transcription factor B cell lymphoma 11A-long (Bcl11A-L) reduces deleted in colorectal cancer (DCC) and microtubule-associated protein (MAP) 1b expression, thereby promoting axon branching. Here, glutamate stimulation down-regulated the levels of the Bcl11A-L, DCC, MAP1b, and MAP2c proteins. Over-expression of either Bcl11A-L or DCC countered the effect of NMDA or glutamate on axon branching and dendrite outgrowth, indicating that the Bcl11A-L/DCC pathway is an important downstream effector of glutamate receptors in neurite arborization. Because knockdown of Bcl11A-L did not down-regulate MAP2c, our results suggest that glutamate receptors also use a Bcl11A-L-independent pathway to control dendrite outgrowth. To summarize, this study reveals novel pathways downstream of glutamate receptors that regulate axon and dendrite arborization.


Assuntos
Axônios/fisiologia , Proteínas de Transporte/fisiologia , Dendritos/fisiologia , Proteínas Nucleares/fisiologia , Receptores de Glutamato/fisiologia , Dedos de Zinco/fisiologia , Animais , Crescimento Celular , Células Cultivadas , Receptor DCC , Ácido Glutâmico/farmacologia , N-Metilaspartato/fisiologia , Ratos , Receptores de Superfície Celular/fisiologia , Proteínas Repressoras , Transdução de Sinais/fisiologia , Proteínas Supressoras de Tumor/fisiologia
8.
J Biomed Sci ; 12(2): 297-310, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15917996

RESUMO

Aurora kinases are emerging as key regulators of centrosome function, chromosome segregation and cytokinesis. We previously isolated Aurora-C (Aie1), a third type of Aurora kinase, in a screen for kinases expressed in mouse sperm and eggs. Currently, we know very little about the precise localization and function of Aurora-C. Immunofluorescence analysis of ectopically expressed GFP-Aurora-C has revealed that Aurora-C is a new member of the chromosomal passenger proteins localizing first to the centromeres and then to the central spindles during cytokinesis. In order to study the potential role of Aurora-C, we examined the effects of a kinase-deficient (KD) mutant (AurC-KD) in HeLa Tet-Off cells under tetracycline control. Our results showed that overexpression of AurC-KD causes defects in cell division and induces polyploidy and apoptosis. Interestingly, AurC-KD overexpression also inhibits centromere/kinetochore localization of Aurora-B, Bub1, and BubR1, reduces histone H3 phosphorylation, and disrupts the association of INCENP with Aurora-B. Together, our results showed that Aurora-C is a chromosomal passenger protein, which may serve as a key regulator in cell division.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Apoptose , Aurora Quinase B , Aurora Quinase C , Aurora Quinases , Proteínas de Ciclo Celular , Divisão Celular , Proliferação de Células , Separação Celular , Centrômero/metabolismo , Centrossomo/ultraestrutura , Citocinese , DNA Complementar/metabolismo , Citometria de Fluxo , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Histonas/metabolismo , Humanos , Immunoblotting , Marcação In Situ das Extremidades Cortadas , Substâncias Macromoleculares , Microscopia de Fluorescência , Mutagênese , Mutação , Fosforilação , Poliploidia , Ligação Proteica , Proteínas Quinases , Fuso Acromático , Tetraciclina/farmacologia , Fatores de Tempo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA