Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Waste Manag ; 178: 331-338, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38430747

RESUMO

The combination of microbial electrolytic cells and anaerobic digestion (MEC-AD) became an efficient method to improve CO2 capture for waste sludge treatment. By adding CaCl2 and wollastonite, the CO2 sequestration effect with mineral carbonation under 0 V and 0.8 V was studied. The results showed that applied voltage could increase dissolved chemical oxygen demand (SCOD) degradation efficiency and biogas yield effectively. In addition, wollastonite and CaCl2 exhibited different CO2 sequestration performances due to different Ca2+ release characteristics. Wollastonite appeared to have a better CO2 sequestration effect and provided a wide margin of pH change, but CaCl2 released Ca2+ directly and decreased the pH of the MEC-AD system. The results showed methane yield reached 137.31 and 163.50 mL/g SCOD degraded and CO2 content of biogas is only 12.40 % and 2.22 % under 0.8 V with CaCl2 and wollastonite addition, respectively. Finally, the contribution of chemical CO2 sequestration by mineral carbonation and biological CO2 sequestration by hydrogenotrophic methanogenesis was clarified with CaCl2 addition. The chemical and biological CO2 sequestration percentages were 46.79 % and 53.21 % under 0.8 V, respectively. With the increased applied voltage, the contribution of chemical CO2 sequestration rose accordingly. The findings in this study are of great significance for further comprehending the mechanism of calcium addition on CO2 sequestration in the MEC-AD system and providing guidance for the later engineering application.


Assuntos
Compostos de Cálcio , Dióxido de Carbono , Esgotos , Silicatos , Dióxido de Carbono/química , Anaerobiose , Biocombustíveis , Cloreto de Cálcio , Minerais , Carbonatos , Metano , Reatores Biológicos
2.
Sci Total Environ ; 912: 169042, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38061648

RESUMO

The anaerobic ammonium oxidation (anammox) process is adversely affected by the limitation of inorganic carbon (IC). In this research, a new technique was introduced to assist anammox biomass in counteracting the adverse effects of IC limitation by incorporating waste iron scraps (WIS), a cheap and easily accessible byproduct of lathe cutting. Results demonstrated that reducing the influent IC/TN ratio from 0.08-0.09 to 0.04 resulted in a 20 % decrease in the nitrogen removal rate (NRR) for the control reactor, with an average specific anammox activity (SAA) of 0.65 g N/g VSS/day. Nevertheless, the performance of the WIS-assisted anammox reactor remained robust despite the reduction in IC supply. In fact, the NRR and SAA of the WIS-assisted reactor exhibited substantial improvements, reaching approximately 1.86 kg/(m3·day) and 0.98 g N/g VSS/day, respectively. These values surpassed those achieved by the control reactor by approximately 39 % and 51 %, respectively. The microbial analysis confirmed that the WIS addition significantly stimulated the proliferation of anammox bacteria (dominated by Candidatus Kuenenia) under IC limitation. The anammox gene abundances in the WIS-assisted anammox reactor were 3-4 times higher than those in the control reactor. Functional genes prediction based on the KEGG database revealed that the addition of WIS significantly enhanced the relative abundances of genes associated with nitrogen metabolism, IC fixation, and central carbon metabolism. Together, the results suggested that WIS promoted carbon dioxide fixation of anammox species to resist IC limitation. This study provided a promising approach for effectively treating high ammonium-strength wastewater using anammox under IC limitation.


Assuntos
Compostos de Amônio , Reatores Biológicos , Reatores Biológicos/microbiologia , Oxidação Anaeróbia da Amônia , Anaerobiose , Oxirredução , Compostos de Amônio/metabolismo , Bactérias/metabolismo , Nitrogênio/metabolismo , Desnitrificação , Esgotos/microbiologia
3.
Sci Total Environ ; 860: 160396, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36435251

RESUMO

To bridge the organic-dependent barrier on nitrogen from low carbon/nitrogen (C/N) municipal wastewater, employing algal biochar supported nano zero-valent iron (ABC-nZVI) was investigated using A/A/O-MBR. Firstly, it can be seen that adequate carbon source is indispensable for the removal, since total nitrogen (TN) removal reached 77.89 % with the influent C/N of 7.8. Secondly, conducted in batch experiments with different doses of ABC-nZVI with/without active sludge, removal efficiency of total inorganic nitrogen (TIN) and the effective time achieved 84.94 % and 24 h with an ABC-nZVI dose of 300 mg/L, respectively. Thirdly, it was found that the duration of high-efficiency denitrification reached 9 h with the addition of 250 mg/L of ABC-nZVI to the anoxic tank of A/A/O-MBR, and the effluent ammonium nitrogen (NH4+-N) also meet the national discharge standard. Besides, biodiversity of both anoxic and aerobic sludge was apparently promoted with the addition of ABC-nZVI, while the lab-scale A/A/O-MBR could also be fully rehabilitated within 12 h. Finally, predicted through PICRUSt2, relevant abundance of functional genes involved in nitrogen metabolism could be enriched by nZVI addition. As an alternative supporting electron donor and mediator, ABC-nZVI can also be participated in the enhanced nitrogen removal in A/A/O-MBR at low C/N.


Assuntos
Esgotos , Águas Residuárias , Carbono , Desnitrificação , Nitrogênio , Ferro , Reatores Biológicos
4.
Sci Total Environ ; 855: 158912, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36162577

RESUMO

Microbial electrolysis cell (MEC) has been existing problems such as poor applicability to real wastewater and lack of cost-effective electrode materials in the practical application of refractory wastewater. A hydrolysis-acidification combined MEC system (HAR-MECs) with four inexpensive stainless-steel and conventional carbon cloth cathodes for the treatment of real textile-dyeing wastewater, which was fully evaluated the technical feasibility in terms of parameter optimization, spectral analysis, succession and cooperative/competition effect of microbial. Results showed that the optimum performance was achieved with a 12 h hydraulic retention time (HRT) and an applied voltage of 0.7 V in the HAR-MEC system with a 100 µm aperture stainless-steel mesh cathode (SSM-100 µm), and the associated optimum BOD5/COD improvement efficiency (74.75 ± 4.32 %) and current density (5.94 ± 0.03 A·m-2) were increased by 30.36 % and 22.36 % compared to a conventional carbon cloth cathode. The optimal system had effective removal of refractory organics and produced small molecules by electrical stimulation. The HAR segment could greatly alleviate the imbalance between electron donors and electron acceptors in the real refractory wastewater and reduce the treatment difficulty of the MEC segment, while the MEC system improved wastewater biodegradability, amplified the positive and specific interactions between degraders, fermenters and electroactive bacteria due to the substrate complexity. The SSM-100 µm-based system constructed by phylogenetic molecular ecological network (pMEN) exhibited moderate complexity and significantly strong positive correlation between electroactive bacteria and fermenters. It is highly feasible to use HAR-MEC with inexpensive stainless-steel cathode for textile-dyeing wastewater treatment.


Assuntos
Fontes de Energia Bioelétrica , Purificação da Água , Águas Residuárias/química , Aço Inoxidável , Hidrólise , Filogenia , Eletrólise/métodos , Eletrodos , Carbono/química , Bactérias , Têxteis , Concentração de Íons de Hidrogênio
5.
Bioresour Technol ; 342: 125959, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34852439

RESUMO

The large-scale application of the bioelectrochemical system (BES) is limited by the cost-effective electrode materials. In this study, five kinds of stainless-steel materials were used as the cathode of the BES coupled with anaerobic digestion (BES-AD) for the treatment of diluted N, N-dimethylacetamide (DMAC) wastewater. Compared with a carbon-cloth cathode, BES-AD with a stainless-steel cathode had more engineering due to its low cost, although the operating efficiencies were slightly inferior. Stainless-steel mesh with a 100 µm aperture (SSM-100 µm) was the most cost-effective electrode and the implanted BES exhibited better COD removal efficiency, electrochemical performance and biodegradability. Analysis of microbial community revealed the synergetic effect between exoelectrogen and fermentative bacteria had been strengthened in the SSM-100 µm cathode biofilm. Function analysis of the microbial community based on PICRUSt predicted metagenomes revealed that the metabolic pathways of xenobiotics biodegradation and metabolism in the SSM-100 µm cathode were stimulated.


Assuntos
Fontes de Energia Bioelétrica , Microbiota , Eletrodos , Aço Inoxidável , Águas Residuárias
6.
Sci Total Environ ; 777: 146144, 2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-33684748

RESUMO

Simultaneous nitrogen removal and methane production using an integrated bioelectrochemical system (BES) during the anaerobic digestion (AD) process of Taihu blue algae were investigated. Upon an applied voltage of 0.4 V and total solids (TS) ratio of blue algae to anaerobic sludge as 1:1, the highest methanogenesis potential as 69.12 mL/g VS could be obtained, attaining 18.7 times of the TS ratio group of 3:1. Moreover, methane production of the integrated BES group reached 3.18 times of the AD group using conical flask, even with the same TS ratio (1:1) and initial ammonia nitrogen concentration (1000 mg NH4+-N/L). Apart from the bettered electrochemical performance, bio-augmented microbial genus responsible for acetoclastic methanogenesis, power generation, resisting to hostile circumstance, co-existence with hydrogenotrophic methanogens could all be enriched. Therefore, integrated BES with appropriate TS ratio under applied voltage might help offset both the ammonia and electrical stress, thereby to maintain enhanced biomethanation performance.


Assuntos
Amônia , Nitrogênio , Anaerobiose , Reatores Biológicos , Desnitrificação , Metano , Esgotos
7.
Waste Manag ; 121: 1-10, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33341689

RESUMO

Anaerobic digestion is a feasible and promising technique to deal with emerging waste activated sludge issues. In this work, the hydrodynamics and digestion performance of horizontal anaerobic systems equipped with double-bladed impeller and ribbon impeller were investigated. Simulation using computational fluid dynamics technique visually showcased the favorable mixing status implementing ribbon impeller. The mixing modes were considered as the major motivation for the difference of mixing efficiencies. Tracing experiment indicated that the minimum thorough mixing time with ribbon impeller was 20 min at a rotation speed of 50 rpm, whereas it was 360 min for the double-bladed impeller under similar conditions. The superior mixing performance of ribbon impeller resulted in better anaerobic digestion and energy efficiency outputs. The digester employing ribbon impeller obtained an ultimate biogas yield of 340.38 ± 15.91 mL/g VS (corresponding methane yield of 210.34 ± 7.55 mL/g VS) and produced a surplus energy of 16.23 ± 0.76 MJ/(m3·d). This study thus ascertained that ribbon impeller was proficient for high-solid anaerobic digestion and it will prominently benefit future system designs.


Assuntos
Hidrodinâmica , Esgotos , Anaerobiose , Biocombustíveis/análise , Reatores Biológicos , Metano , Eliminação de Resíduos Líquidos
8.
Sci Total Environ ; 574: 1649-1658, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27614859

RESUMO

Although exposure to particulate matter with a diameter of <2.5µm (PM2.5) is associated with chronic obstructive pulmonary disease (COPD), the major components of PM2.5 in COPD pathogenesis are controversial. Here we employed the human lung epithelial cell line BEAS-2B to elucidate the association between COPD and the organic and water-soluble components of PM2.5. We found that the PM2.5 organic extract was a potential major risk factor for pulmonary epithelial barrier dysfunction through the depletion of proteins from the zonula occludens. This extract induced severe oxidative stress that increased DNA damage and the production of proinflammatory cytokines by BEAS-2B cells as well as decreased α1-antitrypsin expression, suggesting a mechanism that increases the risk of COPD. These effects were mainly mediated by polycyclic aromatic hydrocarbons (PAHs) through the aryl hydrocarbon receptor pathway. PAHs with high benzo(a)pyrene (BaP)-equivalent concentrations, but not major PAH components, have an increased risk of causing COPD, suggesting that BaP-equivalent concentrations represent a PM2.5-induced COPD risk metric, which may contribute to provide a rationale for the remediation of air pollution.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Células Epiteliais/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos/efeitos adversos , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Linhagem Celular , China/epidemiologia , Humanos , Tamanho da Partícula , Material Particulado/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA