Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 25(3): 1391-1407, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38422548

RESUMO

The design, synthesis, and fabrication of functional nanomaterials with specific properties remain a long-standing goal for many scientific fields. The self-assembly of sequence-defined biomimetic synthetic polymers presents a fundamental strategy to explore the chemical space beyond biological systems to create advanced nanomaterials. Moreover, subsequent chemical modification of existing nanostructures is a unique approach for accessing increasingly complex nanostructures and introducing functionalities. Of these modifications, covalent conjugation chemistries, such as the click reactions, have been the cornerstone for chemists and materials scientists. Herein, we highlight some recent advances that have successfully employed click chemistries for the postmodification of assembled one-dimensional (1D) and two-dimensional (2D) nanostructures to achieve applications in molecular recognition, mineralization, and optoelectronics. Specifically, biomimetic nanomaterials assembled from sequence-defined macromolecules such as peptides and peptoids are described.


Assuntos
Materiais Biomiméticos , Nanoestruturas , Peptoides , Química Click , Biomimética , Nanoestruturas/química , Peptídeos , Peptoides/química
2.
ACS Nano ; 18(4): 3497-3508, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38215492

RESUMO

Two-dimensional (2D) materials have attracted intense interest due to their potential for applications in fields ranging from chemical sensing to catalysis, energy storage, and biomedicine. Recently, peptoids, a class of biomimetic sequence-defined polymers, have been found to self-assemble into 2D crystalline sheets that exhibit unusual properties, such as high chemical stability and the ability to self-repair. The structure of a peptoid is close to that of a peptide except that the side chains are appended to the amide nitrogen rather than the α carbon. In this study, we investigated the effect of peptoid sequence on the mechanism and kinetics of 2D assembly on mica surfaces using in situ AFM and time-resolved X-ray scattering. We explored three distinct peptoid sequences that are amphiphilic in nature with hydrophobic and hydrophilic blocks and are known to self-assemble into 2D sheets. The results show that their assembly on mica starts with deposition of aggregates that spread to establish 2D islands, which then grow by attachment of peptoids, either monomers or unresolvable small oligomers, following well-known laws of crystal step advancement. Extraction of the solubility and kinetic coefficient from the dependence of the growth rate on peptoid concentration reveals striking differences between the sequences. The sequence with the slowest growth rate in bulk and with the highest solubility shows almost no detachment; i.e., once a growth unit attaches to the island edge, there is almost no probability of detaching. Furthermore, a peptoid sequence with a hydrophobic tail conjugated to the final carboxyl residue in the hydrophilic block has enhanced hydrophobic interactions and exhibits rapid assembly both in the bulk and on mica. These assembly outcomes suggest that, while the π-π interactions between adjacent hydrophobic blocks play a major role in peptoid assembly, sequence details, particularly the location of charged groups, as well as interaction with the underlying substrate can significantly alter the thermodynamic stability and assembly kinetics.


Assuntos
Peptoides , Peptoides/química , Peptídeos/química , Silicatos de Alumínio , Amidas/química
3.
Nucleic Acids Res ; 52(3): 1136-1155, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38038252

RESUMO

Maintaining chromatin integrity at the repetitive non-coding DNA sequences underlying centromeres is crucial to prevent replicative stress, DNA breaks and genomic instability. The concerted action of transcriptional repressors, chromatin remodelling complexes and epigenetic factors controls transcription and chromatin structure in these regions. The histone chaperone complex ATRX/DAXX is involved in the establishment and maintenance of centromeric chromatin through the deposition of the histone variant H3.3. ATRX and DAXX have also evolved mutually-independent functions in transcription and chromatin dynamics. Here, using paediatric glioma and pancreatic neuroendocrine tumor cell lines, we identify a novel ATRX-independent function for DAXX in promoting genome stability by preventing transcription-associated R-loop accumulation and DNA double-strand break formation at centromeres. This function of DAXX required its interaction with histone H3.3 but was independent of H3.3 deposition and did not reflect a role in the repression of centromeric transcription. DAXX depletion mobilized BRCA1 at centromeres, in line with BRCA1 role in counteracting centromeric R-loop accumulation. Our results provide novel insights into the mechanisms protecting the human genome from chromosomal instability, as well as potential perspectives in the treatment of cancers with DAXX alterations.


Assuntos
Centrômero , Quebras de DNA de Cadeia Dupla , Chaperonas Moleculares , Proteínas Nucleares , Estruturas R-Loop , Proteína Nuclear Ligada ao X , Criança , Humanos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Centrômero/metabolismo , Cromatina , Proteínas Correpressoras/metabolismo , DNA , Histonas/genética , Histonas/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Proteína Nuclear Ligada ao X/genética , Proteína Nuclear Ligada ao X/metabolismo
4.
J Phys Chem B ; 127(27): 6171-6183, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37379071

RESUMO

Peptoids are a class of highly customizable biomimetic foldamers that retain properties from both proteins and polymers. It has been shown that peptoids can adopt peptide-like secondary structures through the careful selection of sidechain chemistries, but the underlying conformational landscapes that drive these assemblies at the molecular level remain poorly understood. Given the high flexibility of the peptoid backbone, it is essential that methods applied to study peptoid secondary structure formation possess the requisite sensitivity to discriminate between structurally similar yet energetically distinct microstates. In this work, a generalizable simulation scheme is used to robustly sample the complex folding landscape of various 12mer polypeptoids, resulting in a predictive model that links sidechain chemistry with preferential assembly into one of 12 accessible backbone motifs. Using a variant of the metadynamics sampling method, four peptoid dodecamers are simulated in water: sarcosine, N-(1-phenylmethyl)glycine (Npm), (S)-N-(1-phenylethyl)glycine (Nspe), and (R)-N-(1-phenylethyl)glycine (Nrpe)─to determine the underlying entropic and energetic impacts of hydrophobic and chiral peptoid sidechains on secondary structure formation. Our results indicate that the driving forces to assemble Nrpe and Nspe sequences into polyproline type-I helices in water are found to be enthalpically driven, with small benefits from an entropic gain for isomerization and steric strain due to the presence of the chiral center. The minor entropic gains from bulky chiral sidechains in Nrpe- and Nspe-containing peptoids can be explained through increased configurational entropy in the cis state. However, overall assembly into a helix is found to be overall entropically unfavorable. These results highlight the importance of considering the many various competing interactions in the rational design of peptoid secondary structure building blocks.


Assuntos
Peptoides , Peptoides/química , Glicina/química , Termodinâmica , Estrutura Secundária de Proteína , Água
5.
Genome Biol ; 23(1): 251, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36474250

RESUMO

BACKGROUND: Despite having been extensively studied, it remains largely unclear why humans bear a particularly high risk of cancer. The antagonistic pleiotropy hypothesis predicts that primate-specific genes (PSGs) tend to promote tumorigenesis, while the molecular atavism hypothesis predicts that PSGs involved in tumors may represent recently derived duplicates of unicellular genes. However, these predictions have not been tested. RESULTS: By taking advantage of pan-cancer genomic data, we find the upregulation of PSGs across 13 cancer types, which is facilitated by copy-number gain and promoter hypomethylation. Meta-analyses indicate that upregulated PSGs (uPSGs) tend to promote tumorigenesis and to play cell cycle-related roles. The cell cycle-related uPSGs predominantly represent derived duplicates of unicellular genes. We prioritize 15 uPSGs and perform an in-depth analysis of one unicellular gene-derived duplicate involved in the cell cycle, DDX11. Genome-wide screening data and knockdown experiments demonstrate that DDX11 is broadly essential across cancer cell lines. Importantly, non-neutral amino acid substitution patterns and increased expression indicate that DDX11 has been under positive selection. Finally, we find that cell cycle-related uPSGs are also preferentially upregulated in the highly proliferative embryonic cerebrum. CONCLUSIONS: Consistent with the predictions of the atavism and antagonistic pleiotropy hypotheses, primate-specific genes, especially those PSGs derived from cell cycle-related genes that emerged in unicellular ancestors, contribute to the early proliferation of the human cerebrum at the cost of hitchhiking by similarly highly proliferative cancer cells.


Assuntos
Genômica , Neoplasias , Humanos , Ciclo Celular/genética , Neoplasias/genética , DNA Helicases , RNA Helicases DEAD-box
6.
Chem Rev ; 122(24): 17397-17478, 2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36260695

RESUMO

Hierarchical materials that exhibit order over multiple length scales are ubiquitous in nature. Because hierarchy gives rise to unique properties and functions, many have sought inspiration from nature when designing and fabricating hierarchical matter. More and more, however, nature's own high-information content building blocks, proteins, peptides, and peptidomimetics, are being coopted to build hierarchy because the information that determines structure, function, and interfacial interactions can be readily encoded in these versatile macromolecules. Here, we take stock of recent progress in the rational design and characterization of hierarchical materials produced from high-information content blocks with a focus on stimuli-responsive and "smart" architectures. We also review advances in the use of computational simulations and data-driven predictions to shed light on how the side chain chemistry and conformational flexibility of macromolecular blocks drive the emergence of order and the acquisition of hierarchy and also on how ionic, solvent, and surface effects influence the outcomes of assembly. Continued progress in the above areas will ultimately usher in an era where an understanding of designed interactions, surface effects, and solution conditions can be harnessed to achieve predictive materials synthesis across scale and drive emergent phenomena in the self-assembly and reconfiguration of high-information content building blocks.


Assuntos
Peptídeos , Substâncias Macromoleculares/química
7.
Cell Rep ; 38(12): 110555, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35320711

RESUMO

Mutational signatures defined by single base substitution (SBS) patterns in cancer have elucidated potential mutagenic processes that contribute to malignancy. Two prevalent mutational patterns in human cancers are attributed to the APOBEC3 cytidine deaminase enzymes. Among the seven human APOBEC3 proteins, APOBEC3A is a potent deaminase and proposed driver of cancer mutagenesis. In this study, we prospectively examine genome-wide aberrations by expressing human APOBEC3A in avian DT40 cells. From whole-genome sequencing, we detect hundreds to thousands of base substitutions per genome. The APOBEC3A signature includes widespread cytidine mutations and a unique insertion-deletion (indel) signature consisting largely of cytidine deletions. This multi-dimensional APOBEC3A signature is prevalent in human cancer genomes. Our data further reveal replication-associated mutations, the rate of stem-loop and clustered mutations, and deamination of methylated cytidines. This comprehensive signature of APOBEC3A mutagenesis is a tool for future studies and a potential biomarker for APOBEC3 activity in cancer.


Assuntos
Neoplasias , Citidina , Citidina Desaminase , Genoma Humano , Humanos , Mutagênese , Neoplasias/genética , Proteínas
8.
Mol Cell ; 81(14): 2975-2988.e6, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34157308

RESUMO

The heterogeneous nature of eukaryotic replication kinetics and the low efficiency of individual initiation sites make mapping the location and timing of replication initiation in human cells difficult. To address this challenge, we have developed optical replication mapping (ORM), a high-throughput single-molecule approach, and used it to map early-initiation events in human cells. The single-molecule nature of our data and a total of >2,500-fold coverage of the human genome on 27 million fibers averaging ∼300 kb in length allow us to identify initiation sites and their firing probability with high confidence. We find that the distribution of human replication initiation is consistent with inefficient, stochastic activation of heterogeneously distributed potential initiation complexes enriched in accessible chromatin. These observations are consistent with stochastic models of initiation-timing regulation and suggest that stochastic regulation of replication kinetics is a fundamental feature of eukaryotic replication, conserved from yeast to humans.


Assuntos
Replicação do DNA/genética , Células Eucarióticas/fisiologia , Genoma Humano/genética , Linhagem Celular Tumoral , Cromatina/genética , Período de Replicação do DNA/genética , Genoma Fúngico/genética , Estudo de Associação Genômica Ampla/métodos , Células HeLa , Humanos , Origem de Replicação/genética , Saccharomyces cerevisiae/genética , Sítio de Iniciação de Transcrição/fisiologia
9.
Research (Wash D C) ; 2021: 9861384, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34104892

RESUMO

Near-infrared (NIR) laser-induced phototherapy through NIR agents has demonstrated the great potential for cancer therapy. However, insufficient tumor killing due to the nonuniform heat or cytotoxic singlet oxygen (1O2) distribution over tumors from phototherapy results in tumor recurrence and inferior outcomes. To achieve high tumor killing efficacy, one of the solutions is to employ the combinational treatment of phototherapy with other modalities, especially with chemotherapeutic agents. In this paper, a simple and effective multimodal therapeutic system was designed via combining chemotherapy, photothermal therapy (PTT), and photodynamic therapy (PDT) to achieve the polytherapy of malignant glioma which is one of the most aggressive tumors in the brain. IR-780 (IR780) dye-labeled tube-forming peptoids (PepIR) were synthesized and self-assembled into crystalline nanotubes (PepIR nanotubes). These PepIR nanotubes showed an excellent efficacy for PDT/PTT because the IR780 photosensitizers were effectively packed and separated from each other within crystalline nanotubes by tuning IR780 density; thus, a self-quenching of these IR780 molecules was significantly reduced. Moreover, the efficient DOX loading achieved due to the nanotube large surface area contributed to an efficient and synergistic chemotherapy against glioma cells. Given the unique properties of peptoids and peptoid nanotubes, we believe that the developed multimodal DOX-loaded PepIR nanotubes in this work offer great promises for future glioma therapy in clinic.

10.
Nano Lett ; 21(4): 1636-1642, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33555891

RESUMO

The fabrication of ordered architectures that intimately integrate polymer, protein, and inorganic components remains difficult. Two promising building blocks to tackle this challenge are peptoids, peptide mimics capable of self-assembly into well-defined structures, and solid-binding peptides, which offer a biological path to controlled inorganic assembly. Here, we report on the synthesis of 3.3-nm-thick thiol-reactive peptoid nanosheets from equimolar mixtures of unmodified and maleimide-derivatized versions of the Nbpe6Nce6 oligomer, optimize the location of engineered cysteine residues in silica-binding derivatives of superfolder green fluorescent protein for maleimide conjugation, and react the two components to form protein-peptoid hybrids exhibiting partial or uniform protein coverage on both of their sides. Using 10 nm silica nanoparticles, we trigger the stacking of these 2D structures into a multilayered material composed of alternating peptoid, protein, and organic layers. This simple and modular approach to hierarchical hybrid synthesis should prove useful in bioimaging and photocatalysis applications.


Assuntos
Nanopartículas , Peptoides , Proteínas de Transporte , Peptídeos
11.
Genome Med ; 12(1): 85, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32988402

RESUMO

BACKGROUND: APOBEC-driven mutagenesis and functional positive selection of mutated genes may synergistically drive the higher frequency of some hotspot driver mutations compared to other mutations within the same gene, as we reported for FGFR3 S249C. Only a few APOBEC-associated driver hotspot mutations have been identified in bladder cancer (BCa). Here, we systematically looked for and characterised APOBEC-associated hotspots in BCa. METHODS: We analysed 602 published exome-sequenced BCas, for part of which gene expression data were also available. APOBEC-associated hotspots were identified by motif-mapping, mutation signature fitting and APOBEC-mediated mutagenesis comparison. Joint analysis of DNA hairpin stability and gene expression was performed to predict driver or passenger hotspots. Aryl hydrocarbon receptor (AhR) activity was calculated based on its target genes expression. Effects of AhR knockout/inhibition on BCa cell viability were analysed. RESULTS: We established a panel of 44 APOBEC-associated hotspot mutations in BCa, which accounted for about half of the hotspot mutations. Fourteen of them overlapped with the hotspots found in other cancer types with high APOBEC activity. They mostly occurred in the DNA lagging-strand templates and the loop of DNA hairpins. APOBEC-associated hotspots presented systematically a higher prevalence than the other mutations within each APOBEC-target gene, independently of their functional impact. A combined analysis of DNA loop stability and gene expression allowed to distinguish known passenger from known driver hotspot mutations in BCa, including loss-of-function mutations affecting tumour suppressor genes, and to predict new candidate drivers, such as AHR Q383H. We further characterised AHR Q383H as an activating driver mutation associated with high AhR activity in luminal tumours. High AhR activity was also found in tumours presenting amplifications of AHR and its co-receptor ARNT. We finally showed that BCa cells presenting those different genetic alterations were sensitive to AhR inhibition. CONCLUSIONS: Our study identified novel potential drivers within APOBEC-associated hotspot mutations in BCa reinforcing the importance of APOBEC mutagenesis in BCa. It could allow a better understanding of BCa biology and aetiology and have clinical implications such as AhR as a potential therapeutic target. Our results also challenge the dogma that all hotspot mutations are drivers and mostly gain-of-function mutations affecting oncogenes.


Assuntos
Desaminases APOBEC/metabolismo , Biomarcadores Tumorais , Mutação , Oncogenes , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Alelos , Linhagem Celular , Biologia Computacional/métodos , Bases de Dados Genéticas , Feminino , Genômica/métodos , Humanos , Terapia de Alvo Molecular , Mutagênese , Proteínas Supressoras de Tumor/genética , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/terapia , Sequenciamento do Exoma
12.
Mol Cell Oncol ; 8(1): 1843951, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33553603

RESUMO

R-loops have both positive and negative impacts on chromosome functions. To identify toxic R-loops, we mapped RNA:DNA hybrids, markers of replication fork stalling and DNA double-strand breaks along the human genome. This analysis indicates that transient replication fork pausing occurs at the transcription termination sites of highly expressed genes enriched in R-loops and prevents head-on conflicts with transcription, in a topoisomerase I-dependent manner.

14.
Nat Commun ; 10(1): 5693, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31836700

RESUMO

Common fragile sites (CFSs) are chromosome regions prone to breakage upon replication stress known to drive chromosome rearrangements during oncogenesis. Most CFSs nest in large expressed genes, suggesting that transcription could elicit their instability; however, the underlying mechanisms remain elusive. Genome-wide replication timing analyses here show that stress-induced delayed/under-replication is the hallmark of CFSs. Extensive genome-wide analyses of nascent transcripts, replication origin positioning and fork directionality reveal that 80% of CFSs nest in large transcribed domains poor in initiation events, replicated by long-travelling forks. Forks that travel long in late S phase explains CFS replication features, whereas formation of sequence-dependent fork barriers or head-on transcription-replication conflicts do not. We further show that transcription inhibition during S phase, which suppresses transcription-replication encounters and prevents origin resetting, could not rescue CFS stability. Altogether, our results show that transcription-dependent suppression of initiation events delays replication of large gene bodies, committing them to instability.


Assuntos
Sítios Frágeis do Cromossomo/genética , Período de Replicação do DNA/genética , Instabilidade Genômica , Fase S/genética , Terminação da Transcrição Genética , Linhagem Celular , Humanos , Origem de Replicação , Transcrição Gênica
15.
Small ; 15(43): e1902485, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31468663

RESUMO

Substantial progress has been made in applying nanotubes in biomedical applications such as bioimaging and drug delivery due to their unique architecture, characterized by very large internal surface areas and high aspect ratios. However, the biomedical applications of organic nanotubes, especially for those assembled from sequence-defined molecules, are very uncommon. In this paper, the synthesis of two new peptoid nanotubes (PepTs1 and PepTs2) is reported by using sequence-defined and ligand-tagged peptoids as building blocks. These nanotubes are highly robust due to sharing a similar structure to those of nontagged ones, and offer great potential to hold guest molecules for biomedical applications. The findings indicate that peptoid nanotubes loaded with doxorubicin drugs are promising candidates for targeted tumor cell imaging and chemo-photodynamic therapy.


Assuntos
Biomimética , Nanotubos/química , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Peptoides/farmacologia , Fotoquimioterapia , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Endocitose/efeitos dos fármacos , Humanos , Ligantes , Peptoides/química
16.
Eur Urol ; 76(1): 9-13, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30975452

RESUMO

FGFR3 is one of the most frequently mutated genes in bladder cancer and a driver of an oncogenic dependency. Here we report that only the most common recurrent FGFR3 mutation, S249C (TCC→TGC), represents an APOBEC-type motif and is probably caused by the APOBEC-mediated mutagenic process, accounting for its over-representation. We observed significant enrichment of the APOBEC mutational signature and overexpression of AID/APOBEC gene family members in bladder tumors with S249C compared to tumors with other recurrent FGFR3 mutations. Analysis of replication fork directionality suggests that the coding strand of FGFR3 is predominantly replicated as a lagging strand template that could favor the formation of hairpin structures, facilitating mutagenic activity of APOBEC enzymes. In vitro APOBEC deamination assays confirmed S249 as an APOBEC target. We also found that the FGFR3 S249C mutation was common in three other cancer types with an APOBEC mutational signature, but rare in urothelial tumors without APOBEC mutagenesis and in two diseases probably related to aging. PATIENT SUMMARY: We propose that APOBEC-mediated mutagenesis can generate clinically relevant driver mutations even within suboptimal motifs, such as in the case of FGFR3 S249C, one of the most common mutations in bladder cancer. Knowledge about the etiology of this mutation will improve our understanding of the molecular mechanisms of bladder cancer.


Assuntos
Desaminases APOBEC/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Neoplasias da Bexiga Urinária/genética , Aminoidrolases/genética , Citidina Desaminase/genética , Humanos , Antígenos de Histocompatibilidade Menor/genética , Mutagênese/genética , Mutação , Invasividade Neoplásica , Proteínas/genética , Análise de Sequência de RNA , Neoplasias da Bexiga Urinária/patologia
17.
Chem Commun (Camb) ; 47(1): 185-7, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-20730234

RESUMO

We describe the preparation of new 1-D gold nanoparticle superstructures with tailorable thicknesses formed using a self-assembled gold-binding peptide conjugate template and examine how the synthesis and assembly mechanism impacts the organization of the superstructures.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Peptídeos/química , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Tamanho da Partícula , Propriedades de Superfície
18.
J Am Chem Soc ; 132(20): 6902-3, 2010 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-20429558

RESUMO

Designed peptide conjugate molecules are used to simultaneously direct both the synthesis and assembly of gold nanoparticles into various complex 1-D nanoparticle superstructures. We show how synthetic conditions, including reaction time and temperature, can be varied to carefully control the structure of the gold nanoparticle assembly and also the size and density of the nanoparticles within the assembly. We also demonstrate that particle capping agents such as citrate and adenosine triphosphate can be used to adjust the metrics of double-helical gold nanoparticle assemblies, in particular interhelical distances and particle size.

19.
Angew Chem Int Ed Engl ; 49(11): 1924-42, 2010 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-20183835

RESUMO

With their unique sequence-specific self-assembly and their substrate recognition properties, peptides play critical roles in controlling the biomineralization of inorganic nanostructures in natural systems and in directing the assembly of important soft matter. These attributes render them particularly useful molecules for the fabrication of new materials. Researchers from many scientific disciplines now use peptides to direct the synthesis of new inorganic nanostructures and the assembly of soft biomaterials. In this Review we describe the developments in this field and focus on the versatility of peptides and their ability to direct the composition and structure of new inorganic materials.


Assuntos
Compostos Inorgânicos/química , Nanoestruturas/química , Peptídeos/química , Sequência de Aminoácidos , Materiais Biomiméticos/química , Engenharia Genética , Metais/química , Dados de Sequência Molecular , Nanoestruturas/ultraestrutura , Dobramento de Proteína
20.
J Am Chem Soc ; 130(41): 13555-7, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18800838

RESUMO

Left-handed gold nanoparticle double helices were prepared using a new method that allows simultaneous synthesis and assembly of discrete nanoparticles. This method involves coupling the processes of peptide self-assembly of and peptide-based biomineralization of nanoparticles. In this study, AYSSGAPPMPPF (PEPAu), an oligopeptide with an affinity for gold surfaces, was modified with an aliphatic tail to generate C12-PEPAu. In the presence of buffers and gold salts, amphiphilic C12-PEPAu was used to both control the formation of monodisperse gold nanoparticles and simultaneously direct their assembly into left-handed gold nanoparticle double helices. The gold nanoparticle double helices are highly regular, spatially complex, and they exemplify the utility of this methodology for rationally controlling the topology of nanoparticle superstructures and the stereochemical organization of discrete nanoparticles within these structures.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Peptídeos/química , Microscopia Eletrônica de Transmissão , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA