Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mutat Res Rev Mutat Res ; 792: 108466, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37643677

RESUMO

Error-corrected Next Generation Sequencing (ecNGS) is rapidly emerging as a valuable, highly sensitive and accurate method for detecting and characterizing mutations in any cell type, tissue or organism from which DNA can be isolated. Recent mutagenicity and carcinogenicity studies have used ecNGS to quantify drug-/chemical-induced mutations and mutational spectra associated with cancer risk. ecNGS has potential applications in genotoxicity assessment as a new readout for traditional models, for mutagenesis studies in 3D organotypic cultures, and for detecting off-target effects of gene editing tools. Additionally, early data suggest that ecNGS can measure clonal expansion of mutations as a mechanism-agnostic early marker of carcinogenic potential and can evaluate mutational load directly in human biomonitoring studies. In this review, we discuss promising applications, challenges, limitations, and key data initiatives needed to enable regulatory testing and adoption of ecNGS - including for advancing safety assessment, augmenting weight-of-evidence for mutagenicity and carcinogenicity mechanisms, identifying early biomarkers of cancer risk, and managing human health risk from chemical exposures.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Mutagênicos , Humanos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Testes de Mutagenicidade , Mutação , Mutagênicos/toxicidade , Carcinógenos/toxicidade , Carcinogênese , Medição de Risco
2.
Regen Med ; 18(3): 219-227, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36852420

RESUMO

Aim & methods: The Health and Environmental Sciences Institute Cell Therapy-TRAcking, Circulation & Safety Technical Committee launched an international, multisite study to evaluate the sensitivity and reproducibility of the highly efficient culture (HEC) assay, an in vitro assay to detect residual undifferentiated human pluripotent stem cells (hPSCs) in cell therapy products. Results: All facilities detected colonies of human induced pluripotent stem cells (hiPSCs) when five hiPSCs were spiked into 1 million hiPSC-derived cardiomyocytes. Spiking with a trace amount of hiPSCs revealed that repeatability accounts for the majority of reproducibility while the true positive rate was high. Conclusion: The results indicate that the HEC assay is highly sensitive and robust and can be generally applicable for tumorigenicity evaluation of hPSC-derived cell therapy products.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Humanos , Reprodutibilidade dos Testes , Academias e Institutos , Bioensaio
4.
Front Toxicol ; 4: 859122, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35686044

RESUMO

Genotoxicity testing is performed to determine potential hazard of a chemical or agent for direct or indirect DNA interaction. Testing may be a surrogate for assessment of heritable genetic risk or carcinogenic risk. Testing of nanomaterials (NM) for hazard identification is generally understood to require a departure from normal testing procedures found in international standards and guidelines. A critique of the genotoxicity literature in Elespuru et al., 2018, reinforced evidence of problems with genotoxicity assessment of nanomaterials (NM) noted by many previously. A follow-up to the critique of problems (what is wrong) is a series of methods papers in this journal designed to provide practical information on what is appropriate (right) in the performance of genotoxicity assays altered for NM assessment. In this "Common Considerations" paper, general considerations are addressed, including NM characterization, sample preparation, dosing choice, exposure assessment (uptake) and data analysis that are applicable to any NM genotoxicity assessment. Recommended methods for specific assays are presented in a series of additional papers in this special issue of the journal devoted to toxicology methods for assessment of nanomaterials: the In vitro Micronucleus Assay, TK Mutagenicity assays, and the In vivo Comet Assay. In this context, NM are considered generally as insoluble particles or test articles in the nanometer size range that present difficulties in assessment using techniques described in standards such as OECD guidelines.

5.
Reprod Toxicol ; 59: 22-30, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26854737

RESUMO

Small molecule pharmaceutical products are assumed to reach concentrations in semen similar to those in blood plasma. Exposure modeling for these small-molecule products in humans assumes a daily dose of 5mL of semen and 100% absorption from the vagina with distribution to the conceptus through the maternal systemic circulation. Monoclonal antibody drugs are present in semen at concentrations about 2% or less of those in blood, and the modeling used for small molecules will over-estimate the possibility of conceptus exposure to immunoglobulins. It is not known whether peptide products reach semen, but in general peptide medications are destroyed by vaginal peptidases, and conceptus exposure is predicted to be minimal. Theoretical exposure routes to pharmaceuticals that might result in exposure of the conceptus greater than that of maternal systemic exposures include direct access through the cervical canal, adsorption to sperm for carriage into the oocyte, and direct delivery from the vaginal veins or lymphatics to the uterine artery. There is some evidence for direct access to the uterus for progesterone, terbutaline, and danazol, but the evidence does not involve exposures during pregnancy in most instances. Studies in mice, rats, rabbits, and monkeys do not suggest that exposure to small molecule pharmaceuticals in semen imposes risks to the conceptus beyond those that can be predicted using modeling of systemic maternal exposure. Monoclonal antibody and peptide exposure in semen does not pose a significant risk to the conceptus.


Assuntos
Anticorpos Monoclonais/metabolismo , Embrião de Mamíferos/metabolismo , Feto/metabolismo , Peptídeos/metabolismo , Preparações Farmacêuticas/metabolismo , Sêmen/metabolismo , Vagina/metabolismo , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/química , Anticorpos Monoclonais/toxicidade , Transporte Biológico , Embrião de Mamíferos/efeitos dos fármacos , Feminino , Feto/efeitos dos fármacos , Haplorrinos , Humanos , Masculino , Exposição Materna , Camundongos , Modelos Animais , Modelos Biológicos , Exposição Paterna , Peptídeos/química , Peptídeos/toxicidade , Permeabilidade , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/química , Coelhos , Medição de Risco , Absorção Vaginal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA