Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(3): 113872, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38427562

RESUMO

Infection, autoimmunity, and cancer are principal human health challenges of the 21st century. Often regarded as distinct ends of the immunological spectrum, recent studies hint at potential overlap between these diseases. For example, inflammation can be pathogenic in infection and autoimmunity. T resident memory (TRM) cells can be beneficial in infection and cancer. However, these findings are limited by size and scope; exact immunological factors shared across diseases remain elusive. Here, we integrate large-scale deeply clinically and biologically phenotyped human cohorts of 526 patients with infection, 162 with lupus, and 11,180 with cancer. We identify an NKG2A+ immune bias as associative with protection against disease severity, mortality, and autoimmune/post-acute chronic disease. We reveal that NKG2A+ CD8+ T cells correlate with reduced inflammation and increased humoral immunity and that they resemble TRM cells. Our results suggest NKG2A+ biases as a cross-disease factor of protection, supporting suggestions of immunological overlap between infection, autoimmunity, and cancer.


Assuntos
Doenças Autoimunes , Doenças Transmissíveis , Neoplasias , Humanos , Linfócitos T CD8-Positivos , Neoplasias/patologia , Autoimunidade , Inflamação/patologia , Doenças Autoimunes/patologia , Doenças Transmissíveis/patologia , Memória Imunológica
2.
Commun Biol ; 6(1): 528, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37193826

RESUMO

The discovery and characterization of antigen-specific CD8+ T cell clonotypes typically involves the labor-intensive synthesis and construction of peptide-MHC tetramers. We adapt single-chain trimer (SCT) technologies into a high throughput platform for pMHC library generation, showing that hundreds can be rapidly prepared across multiple Class I HLA alleles. We use this platform to explore the impact of peptide and SCT template mutations on protein expression yield, thermal stability, and functionality. SCT libraries were an efficient tool for identifying T cells recognizing commonly reported viral epitopes. We then construct SCT libraries to capture SARS-CoV-2 specific CD8+ T cells from COVID-19 participants and healthy donors. The immunogenicity of these epitopes is validated by functional assays of T cells with cloned TCRs captured using SCT libraries. These technologies should enable the rapid analyses of peptide-based T cell responses across several contexts, including autoimmunity, cancer, or infectious disease.


Assuntos
Linfócitos T CD8-Positivos , COVID-19 , Humanos , SARS-CoV-2/genética , Antígenos , Epitopos , Peptídeos/genética
3.
Breast Cancer Res ; 23(1): 96, 2021 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-34629099

RESUMO

BACKGROUND: Transcriptome sequencing has been broadly available in clinical studies. However, it remains a challenge to utilize these data effectively for clinical applications due to the high dimension of the data and the highly correlated expression between individual genes. METHODS: We proposed a method to transform RNA sequencing data into artificial image objects (AIOs) and applied convolutional neural network (CNN) algorithms to classify these AIOs. With the AIO technique, we considered each gene as a pixel in an image and its expression level as pixel intensity. Using the GSE96058 (n = 2976), GSE81538 (n = 405), and GSE163882 (n = 222) datasets, we created AIOs for the subjects and designed CNN models to classify biomarker Ki67 and Nottingham histologic grade (NHG). RESULTS: With fivefold cross-validation, we accomplished a classification accuracy and AUC of 0.821 ± 0.023 and 0.891 ± 0.021 for Ki67 status. For NHG, the weighted average of categorical accuracy was 0.820 ± 0.012, and the weighted average of AUC was 0.931 ± 0.006. With GSE96058 as training data and GSE81538 as testing data, the accuracy and AUC for Ki67 were 0.826 ± 0.037 and 0.883 ± 0.016, and that for NHG were 0.764 ± 0.052 and 0.882 ± 0.012, respectively. These results were 10% better than the results reported in the original studies. For Ki67, the calls generated from our models had a better power for prediction of survival as compared to the calls from trained pathologists in survival analyses. CONCLUSIONS: We demonstrated that RNA sequencing data could be transformed into AIOs and be used to classify Ki67 status and NHG with CNN algorithms. The AIO method could handle high-dimensional data with highly correlated variables, and there was no need for variable selection. With the AIO technique, a data-driven, consistent, and automation-ready model could be developed to classify biomarkers with RNA sequencing data and provide more efficient care for cancer patients.


Assuntos
Algoritmos , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Redes Neurais de Computação , Biomarcadores Tumorais/genética , Neoplasias da Mama/patologia , Bases de Dados Genéticas , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Antígeno Ki-67/genética , Reprodutibilidade dos Testes , Análise de Sobrevida , Transcriptoma
4.
PLoS One ; 12(7): e0181432, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28715456

RESUMO

Glycerophospholipids are the most abundant constituents of biological membranes in Trypanosoma brucei, which causes sleeping sickness in humans and nagana in cattle. They are essential cellular components that fulfill various important functions beyond their structural role in biological membranes such as in signal transduction, regulation of membrane trafficking or control of cell cycle progression. Our previous studies have established that the glycerol-3-phosphate acyltransferase TbGAT is dispensable for growth, viability, and ester lipid biosynthesis suggesting the existence of another initial acyltransferase(s). This work presents the characterization of the alternative, dihydroxyacetonephosphate acyltransferase TbDAT, which acylates primarily dihydroxyacetonephosphate and prefers palmitoyl-CoA as an acyl-CoA donor. TbDAT restores the viability of a yeast double null mutant that lacks glycerol-3-phosphate and dihydroxyacetonephosphate acyltransferase activities. A conditional null mutant of TbDAT in T. brucei procyclic form was created and characterized. TbDAT was important for survival during stationary phase and synthesis of ether lipids. In contrast, TbDAT was dispensable for normal growth. Our results show that in T. brucei procyclic forms i) TbDAT but not TbGAT is the physiologically relevant initial acyltransferase and ii) ether lipid precursors are primarily made by TbDAT.


Assuntos
Aciltransferases/metabolismo , Éteres Fosfolipídicos/metabolismo , Trypanosoma brucei brucei/enzimologia , Trypanosoma brucei brucei/crescimento & desenvolvimento , Aciltransferases/genética , Western Blotting , Eletroforese em Gel de Poliacrilamida , Imunofluorescência , Microcorpos/metabolismo , Mutação , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA