Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Cancer ; 24(1): 230, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38373930

RESUMO

BACKGROUND: This study aimed to identify metabolic subtypes in ESCA, explore their relationship with immune landscapes, and establish a metabolic index for accurate prognosis assessment. METHODS: Clinical, SNP, and RNA-seq data were collected from 80 ESCA patients from the TCGA database and RNA-seq data from the GSE19417 dataset. Metabolic genes associated with overall survival (OS) and progression-free survival (PFS) were selected, and k-means clustering was performed. Immune-related pathways, immune infiltration, and response to immunotherapy were predicted using bioinformatic algorithms. Weighted gene co-expression network analysis (WGCNA) was conducted to identify metabolic genes associated with co-expression modules. Lastly, cell culture and functional analysis were performed using patient tissue samples and ESCA cell lines to verify the identified genes and their roles. RESULTS: Molecular subtypes were identified based on the expression profiles of metabolic genes, and univariate survival analysis revealed 163 metabolic genes associated with ESCA prognosis. Consensus clustering analysis classified ESCA samples into three distinct subtypes, with MC1 showing the poorest prognosis and MC3 having the best prognosis. The subtypes also exhibited significant differences in immune cell infiltration, with MC3 showing the highest scores. Additionally, the MC3 subtype demonstrated the poorest response to immunotherapy, while the MC1 subtype was the most sensitive. WGCNA analysis identified gene modules associated with the metabolic index, with SLC5A1, NT5DC4, and MTHFD2 emerging as prognostic markers. Gene and protein expression analysis validated the upregulation of MTHFD2 in ESCA. MTHFD2 promotes the progression of ESCA and may be a potential therapeutic target for ESCA. CONCLUSION: The established metabolic index and identified metabolic genes offer potential for prognostic assessment and personalized therapeutic interventions for ESCA, underscoring the importance of targeting metabolism-immune interactions in ESCA. MTHFD2 promotes the progression of ESCA and may be a potential therapeutic target for ESCA.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Prognóstico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/terapia , Imunoterapia , Regulação para Cima
2.
Hum Exp Toxicol ; 41: 9603271221080236, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35099326

RESUMO

BACKGROUND: Periodontal dressing is used to cover the gum surface and protect the wound after periodontal surgery. Nanomaterials have been widely applied in dentistry in recent years. Zinc oxide (ZnO) is one of the main components of periodontal dressing. AIM: This study aims to explore the toxicity ZnO nanoparticles (ZnO NPs) causes to human gingival fibroblast cells (HGF-1) and its effect on cell proliferation. METHODS: First, we identified and analyzed HGF-1, including cell morphology, growth curve, and immunohistochemistry staining. Then, we treated HGF-1 with ZnO NP. Cell viability, the integrity of the cell membrane, oxidative damage, and apoptosis were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, lactate dehydrogenase (LDH) release assay, fluorescent probe, and flow cytometry. Furthermore, the expression of murine double minute 2 (MDM2) and p53 was determined by quantitative real-time polymerase chain reaction (qPCR) and Western blotting. We finally overexpressed MDM2 in HGF-1 to verify the relationship between MDM2 and cell proliferation. RESULTS: Our research indicated ZnO NPs did not affect cell proliferation at low concentrations. However, high-concentration ZnO NP inhibited cell proliferation, destroyed the integrity of cell membranes, and induced oxidative stress and apoptosis. In addition, high concentration of ZnO NPs inhibited the proliferation of HGF-1 by regulating the expression of MDM2 and p53. CONCLUSION: High concentration of ZnO NP caused toxicity to HGF-1 cells and inhibited cell proliferation by regulating MDM2 and p53 expression.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Gengiva/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Óxido de Zinco/toxicidade , Animais , Células Cultivadas/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Camundongos
3.
Hum Exp Toxicol ; 40(12_suppl): S804-S813, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34797187

RESUMO

BACKGROUND: Periodontal dressing is used to cover the gum surface and protect the wound after periodontal surgery. Nanomaterials have been widely applied in dentistry in recent years. Zinc oxide (ZnO) is one of the main components of periodontal dressing. AIM: This study aims to explore the toxicity ZnO nanoparticles (ZnO NPs) causes to human gingival fibroblast cells (HGF-1) and its effect on cell proliferation. METHODS: First, we identified and analyzed HGF-1, including cell morphology, growth curve, and immunohistochemistry staining. Then, we treated HGF-1 with ZnO NP. Cell viability, the integrity of the cell membrane, oxidative damage, and apoptosis were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, lactate dehydrogenase (LDH) release assay, fluorescent probe, and flow cytometry. Furthermore, the expression of murine double minute 2 (MDM2) and p53 was determined by quantitative real-time polymerase chain reaction (qPCR) and Western blotting. We finally overexpressed MDM2 in HGF-1 to verify the relationship between MDM2 and cell proliferation. RESULTS: Our research indicated ZnO NPs did not affect cell proliferation at low concentrations. However, high-concentration ZnO NP inhibited cell proliferation, destroyed the integrity of cell membranes, and induced oxidative stress and apoptosis. In addition, high concentration of ZnO NPs inhibited the proliferation of HGF-1 by regulating the expression of MDM2 and p53. CONCLUSION: High concentration of ZnO NP caused toxicity to HGF-1 cells and inhibited cell proliferation by regulating MDM2 and p53 expression.


Assuntos
Proliferação de Células/efeitos dos fármacos , Gengiva/efeitos dos fármacos , Nanopartículas Metálicas/química , Óxido de Zinco/química , Gengiva/citologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA