Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res Ther ; 14(1): 351, 2023 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072929

RESUMO

BACKGROUND: Kupffer cells (KCs) originate from yolk-sac progenitors before birth. Throughout adulthood, they self-maintain independently from the input of circulating monocytes (MOs) at a steady state and are replenished within 2 weeks after having been depleted, but the origin of repopulating KCs in adults remains unclear. The current paradigm dictates that repopulating KCs originate from preexisting KCs or monocytes, but there remains a lack of fate-mapping evidence. METHODS: We first traced the fate of preexisting KCs and that of monocytic cells with tissue-resident macrophage-specific and monocytic cell-specific fate-mapping mouse models, respectively. Secondly, we performed genetic lineage tracing to determine the type of progenitor cells involved in response to KC-depletion in mice. Finally, we traced the fate of hematopoietic stem cells (HSCs) in an HSC-specific fate-mapping mouse model, in the context of chronic liver inflammation induced by repeated carbon tetrachloride treatment. RESULTS: By using fate-mapping mouse models, we found no evidence that repopulating KCs originate from preexisting KCs or MOs and found that in response to KC-depletion, HSCs proliferated in the bone marrow, mobilized into the blood, adoptively transferred into the liver and differentiated into KCs. Then, in the chronic liver inflammation context, we confirmed that repopulating KCs originated directly from HSCs. CONCLUSION: Taken together, these findings provided in vivo fate-mapping evidence that repopulating KCs originate directly from HSCs, which presents a completely novel understanding of the cellular origin of repopulating KCs and shedding light on the divergent roles of KCs in liver homeostasis and diseases.


Assuntos
Células-Tronco Hematopoéticas , Células de Kupffer , Camundongos , Animais , Fígado , Monócitos , Inflamação
2.
Nat Chem Biol ; 16(3): 250-256, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31932723

RESUMO

In plants, lineage-specific metabolites can be created by activities derived from the catalytic promiscuity of ancestral proteins, although examples of recruiting detoxification systems to biosynthetic pathways are scarce. The ubiquitous glyoxalase (GLX) system scavenges the cytotoxic methylglyoxal, in which GLXI isomerizes the α-hydroxy carbonyl in the methylglyoxal-glutathione adduct for subsequent hydrolysis. We show that GLXIs across kingdoms are more promiscuous than recognized previously and can act as aromatases without cofactors. In cotton, a specialized GLXI variant, SPG, has lost its GSH-binding sites and organelle-targeting signal, and evolved to aromatize cyclic sesquiterpenes bearing α-hydroxyketones to synthesize defense compounds in the cytosol. Notably, SPG is able to transform acetylated deoxynivalenol, the prevalent mycotoxin contaminating cereals and foods. We propose that detoxification enzymes are a valuable source of new catalytic functions and SPG, a standalone enzyme catalyzing complex reactions, has potential for toxin degradation, crop engineering and design of novel aromatics.


Assuntos
Aromatase/metabolismo , Lactoilglutationa Liase/química , Lactoilglutationa Liase/metabolismo , Aromatase/química , Produtos Biológicos , Catálise , Citosol/metabolismo , Glutationa/metabolismo , Gossypium/metabolismo , Complexos Multienzimáticos , Aldeído Pirúvico/química , Aldeído Pirúvico/metabolismo
3.
Chem Commun (Camb) ; 52(3): 575-8, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26549827

RESUMO

Using the versatility of silica chemistry, we describe herein a simple and controllable approach to synthesise two-dimensional (2D) silica-based nanomaterials: the diversity and utility of the resulting structures offer excellent platforms for many potential applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA