Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Rev Chem ; 8(5): 304-318, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38575678

RESUMO

Stapling has emerged as a powerful technique in peptide chemistry. It enables precise control over peptide conformation leading to enhanced properties such as improved stability and enhanced binding affinity. Although symmetric stapling methods have been extensively explored, the field of non-symmetric stapling of native peptides has received less attention, largely as a result of the formidable challenges it poses - in particular the complexities involved in achieving the high chemo-selectivity and site-selectivity required to simultaneously modify distinct proteinogenic residues. Over the past 5 years, there have been significant breakthroughs in addressing these challenges. In this Review, we describe the latest strategies for non-symmetric stapling of native peptides, elucidating the protocols, reaction mechanisms and underlying design principles. We also discuss current challenges and opportunities this field offers for future applications, such as ligand discovery and peptide-based therapeutics.


Assuntos
Peptídeos , Peptídeos/química , Humanos
2.
J Am Chem Soc ; 146(9): 6307-6316, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38381876

RESUMO

Saturated hydrocarbon bonds are ubiquitous in organic molecules; to date, the selective functionalization of C(sp3)-H bonds continues to pose a notorious difficulty, thereby garnering significant attention from the synthetic chemistry community. During the past several decades, a wide array of powerful new methodologies has been developed to enantioselectively modify C(sp3)-H bonds that is successfully applied in asymmetric formation of diverse bonds, including C-C, C-N, and C-O bonds; nevertheless, the asymmetric C(sp3)-H alkylation is elusive and, therefore, far less explored. In this work, we report a direct and robust strategy to construct highly valuable enantioenriched unnatural α-amino acid (α-AA) cognates and peptides by a copper-catalyzed enantioselective remote C(sp3)-H alkylation of N-fluorocarboxamides and readily accessible glycine esters under ambient conditions. The key to success lies in the optically active Cu catalyst generated through the coordination of glycine derivatives to enantiopure bisphosphine/Cu(I) species, which is beneficial to the single electronic reduction of N-fluorocarboxamides and the subsequent stereodetermining alkylation. More importantly, all types (primary, secondary, tertiary, and even α-oxy) of δ-C(sp3)-H bonds could be site- and stereospecifically activated by the kinetically favored 1,5-hydrogen atom transfer (1,5-HAT) step.


Assuntos
Cobre , Glicina , Cobre/química , Alquilação , Peptídeos/química , Catálise
3.
Bioorg Chem ; 143: 106977, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38064805

RESUMO

It is reported that panaxadiol has neuroprotective effects. Previous studies have found that compound with carbamate structure introduced at the 3-OH position of 20 (R) -panaxadiol showed the most effective neuroprotective activity with an EC50 of 13.17 µM. Therefore, we designed and synthesized a series of ginseng diol carbamate derivatives with ginseng diol as the lead compound, and tested their anti-AD activity. It was found that the protective effect of compound Q4 on adrenal pheochromocytoma was 80.6 ±â€¯10.85 % (15 µM), and the EC50 was 4.32 µM. According to the ELISA results, Q4 reduced the expression of Aß25-35 by decreasing ß-secretase production. Molecular docking studies revealed that the binding affinity of Q4 to ß-secretase was -49.67 kcal/mol, indicating a strong binding affinity of Q4 to ß-secretase. Western blotting showed that compound Q4 decreased IL-1ß levels, which may contribute to its anti-inflammatory effect. Furthermore, compound Q4 exhibits anti-AD activities by reducing abnormal phosphorylation of tau protein and activation of the mitogen activated protein kinase pathway. The learning and memory deficits in mice treated with Q4in vivo were significantly alleviated. Therefore, Q4 may be a promising multifunctional drug for the treatment of AD, providing a new way for anti-AD drugs.


Assuntos
Doença de Alzheimer , Ginsenosídeos , Fármacos Neuroprotetores , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Simulação de Acoplamento Molecular , Carbamatos/química , Secretases da Proteína Precursora do Amiloide/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
4.
Expert Opin Drug Discov ; 19(2): 239-251, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37978948

RESUMO

INTRODUCTION: Vinyl sulfones are a special sulfur-containing structural unit that have attracted considerable attention, owing to their important role in serving as key structural motifs of various biologically active compounds as well as serving as versatile building blocks for organic transformations. The synthetic strategy of vinyl sulfone derivatives has been substantially upgraded over the past 30 years, and the wide application of this functional group in drug design and discovery has been promoted. AREA COVERED: In this review, the authors review the application of vinyl sulfones in drug discovery and select optimized compounds which might have significant impact or potential inspiration for drug design. EXPERT OPINION: Vinyl sulfones have been reported to target various macromolecular targets via non-covalent or covalent interactions, including multiple kinases, tubulin, cysteine protease, transcription factor, and so on. Thus, it has been significantly applied as a privileged scaffold in the design of anticancer, anti-infective, anti-inflammatory, and neuroprotective agents. However, much work remains to be done to improve the drug-like properties, such as chemical and metabolic stability, ADME, and toxicity. Besides, the chemical space of vinyl sulfones needs to be expanded, including but not limited to the design of constrained endocyclic and exocyclic vinyl sulfones.


Assuntos
Fármacos Neuroprotetores , Sulfonas , Humanos , Sulfonas/química , Fatores de Transcrição , Desenho de Fármacos
5.
RSC Adv ; 13(51): 36346-36363, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38093731

RESUMO

α-Lipoic acid (ALA) is a naturally occurring sulfur-containing fatty acid with high antioxidant activity. It is also used to treat diabetes, nerve pain, weight loss, heart disease, and primary mitochondrial disorders. Moreover, numerous therapeutic agents have been studied for managing other clinical conditions, including for anticancer, anti-HIV, anti-inflammatory, and anti-AD treatments. The medicinal importance of ALA, especially its biologically active form (R-ALA), has attracted considerable attention from synthetic chemists in industrial and academic fields. In this review, we discuss synthetic approaches to ALA and R-ALA over the past 70 years (1952 to the present), which will help medicinal chemists further develop novel routes for their synthesis.

6.
ChemMedChem ; 18(23): e202300468, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37815017

RESUMO

The serious adverse effects caused by non-selective and selective cyclooxygenase-2 (COX-2) inhibitors remain significant concerns for current anti-inflammatory drugs. In this study, we present the design and synthesis of a novel series of celecoxib analogs incorporating a hydrazone linker, which were subjected to in silico analysis to compare their binding poses with those of clinically used nonsteroidal anti-inflammatory drugs (NSAIDs) against COX-1 and COX-2. The synthesized analogs were evaluated for their inhibitory activity against both COX enzymes, and compound 6 m, exhibiting potent balanced inhibition, was selected for subsequent in vitro anti-inflammatory assays. Treatment with 6 m effectively suppressed the NF-κB signaling pathway in lipopolysaccharide (LPS)-stimulated murine RAW264.7 macrophages, resulting in reduced expression of pro-inflammatory factors such as inducible nitric oxide synthase (iNOS), COX-2, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), IL-1ß, as well as decreased production of prostaglandin E2 (PGE2 ), nitric oxide (NO), and reactive oxygen species (ROS). However, 6 m has no effect on the MAPK signaling pathway. Therefore, due to its potent in vitro anti-inflammatory activity coupled with lack of cytotoxicity, 6 m represents a promising candidate for further development as a new lead compound targeting inflammation.


Assuntos
Urocordados , Camundongos , Animais , Celecoxib/farmacologia , Ciclo-Oxigenase 2/metabolismo , Urocordados/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Inibidores de Ciclo-Oxigenase 2/farmacologia , NF-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo
7.
J Am Chem Soc ; 145(42): 22945-22953, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37769281

RESUMO

Darobactin is a heptapeptide antibiotic featuring an ether cross-link and a C-C cross-link, and both cross-links are installed by a radical S-adenosylmethionine (rSAM) enzyme DarE. How a single DarE enzyme affords the two chemically distinct cross-links remains largely obscure. Herein, by mapping the biosynthetic landscape for darobactin-like RiPP (daropeptide), we identified and characterized two novel daropeptides that lack the C-C cross-link present in darobactin and instead are solely composed of ether cross-links. Phylogenetic and mutagenesis analyses reveal that the daropeptide maturases possess intrinsic multifunctionality, catalyzing not only the formation of ether cross-link but also C-C cross-linking and Ser oxidation. Intriguingly, the different chemical outcomes are controlled by the exact substrate motifs. Our work not only provides a roadmap for the discovery of new daropeptide natural products but also offers insights into the regulatory mechanisms that govern these remarkably versatile ether cross-link-forming rSAM enzymes.


Assuntos
Éter , S-Adenosilmetionina , S-Adenosilmetionina/química , Filogenia , Éteres , Etil-Éteres , Catálise
8.
Eur J Med Chem ; 259: 115697, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37544187

RESUMO

Acute lung injury (ALI) refers to a series of lung lesions resulting from multiple lung injuries, even leading to morbidity and death, abundant previous reports have showed that anti-inflammatory as a key to treatment of ALI. Fusidic acid (FA) as an antibiotic has significant anti-bacterial activity and anti-inflammatory effects. In this study, we designed and synthesized 34 FA derivatives to identify new anti-inflammatory drugs. The anti-inflammatory activities of the derivatives were screened using lipopolysaccharide (LPS)-induced RAW264.7 cells to evaluate the anti-inflammatory activity of the compounds, we measured nitric oxide (NO) and interleukin-6 (IL-6). Most of compounds showed inhibitory effects on inflammatory NO and IL-6 in LPS-induced RAW264.7 cells. Based on the screening results, compound a1 showed the strongest anti-inflammatory activity. Compared with FA, the inhibition rate NO and IL-6 of compound a1 increased 3.08 and 2.09 times at 10 µM, respectively. We further measured a1 inhibited inflammatory factor NO (IC50 = 3.26 ± 0.42 µM), IL-6 (IC50 = 1.85 ± 0.21 µM) and TNF-α (IC50 = 3.88 ± 0.55 µM). We also demonstrated that a1 markedly inhibits the expression of certain immune-related cytotoxic factors, including cyclooxygenase-2 (COX-2) and inducible nitric-oxide synthase (iNOS). In vivo results indicate that a1 can reduce lung inflammation and NO, IL-6, TNF-α, COX-2 and iNOS in LPS-induced ALI mice. On the one hand, we demonstrated a1 inhibits the mitogen-activated protein kinase (MAPK) signaling pathway by down-regulating the phosphorylation of p38 MAPK, c-Jun N-terminal kinase (c-JNK) and extracellular signal-regulated kinase (ERK). Moreover, a1 also suppressing the phosphorylation of inhibitory NF-κB inhibitor α (IκBα) inhibits the activation of the nuclear factor-κB (NF-κB) signaling pathway. On the other hand, we demonstrated a1 also role in anti-inflammatory by inhibits nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) inflammasome and further inhibits Caspase-1 and inflammatory factor interleukin-1ß (IL-1ß). In conclusion, our study demonstrates that a1 has an anti-inflammatory effect and alleviates ALI by regulating inflammatory mediators and suppressing the MAPK, NF-κB and NLRP3 inflammasome signaling pathways.


Assuntos
Lesão Pulmonar Aguda , NF-kappa B , Animais , Camundongos , NF-kappa B/metabolismo , Ácido Fusídico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Inflamassomos/metabolismo , Lipopolissacarídeos/farmacologia , Ciclo-Oxigenase 2/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/metabolismo
9.
Nat Commun ; 14(1): 138, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36627283

RESUMO

ß-Nucleosides and their analogs are dominant clinically-used antiviral and antitumor drugs. α-Nucleosides, the anomers of ß-nucleosides, exist in nature and have significant potential as drugs or drug carriers. Currently, the most widely used methods for synthesizing ß- and α-nucleosides are via N-glycosylation and pentose aminooxazoline, respectively. However, the stereoselectivities of both methods highly depend on the assisting group at the C2' position. Herein, we report an additive-controlled stereodivergent iodocyclization method for the selective synthesis of α- or ß-nucleosides. The stereoselectivity at the anomeric carbon is controlled by the additive (NaI for ß-nucleosides; PPh3S for α-nucleosides). A series of ß- and α-nucleosides are prepared in high yields (up to 95%) and stereoselectivities (ß:α up to 66:1, α:ß up to 70:1). Notably, the introduced iodine at the C2' position of the nucleoside is readily functionalized, leading to multiple structurally diverse nucleoside analogs, including stavudine, an FDA-approved anti-HIV agent, and molnupiravir, an FDA-approved anti-SARS-CoV-2 agent.


Assuntos
Fármacos Anti-HIV , COVID-19 , Humanos , Nucleosídeos , Estereoisomerismo , Antivirais/farmacologia
10.
Phytochemistry ; 206: 113532, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36470328

RESUMO

Natural products can generally exhibit a variety of biological activities, but most show mediocre performance in preliminary activity evaluation. Natural products often require structural modification to obtain promising lead compounds. Cinnamic acid (CA) is readily available and has diverse biological activities and low cytotoxicity. Introducing CA into natural products may improve their performance, enhance biological activity, and reduce toxic side effect. Herein, we aimed to discuss related applications of CA in the structural modification of natural products and provide a theoretical basis for future derivatization and drug development of natural products. Published articles, web databases (PubMed, Science Direct, SCI Finder, and CNKI), and clinical trial websites (https://clinicaltrials.gov/) related to natural products and CA derivatives were included in the discussion. Based on the inclusion criteria, 128 studies were selected and discussed herein. Screening natural products of CA derivatives allowed for classification by their biological activities. The full text is organized according to the biological activities of the derivatives, with the following categories: anti-tumor, neuroprotective, anti-diabetic, anti-microbial, anti-parasitic, anti-oxidative, anti-inflammatory, and other activities. The biological activity of each CA derivative is discussed in detail. Notably, most derivatives exhibited enhanced biological activity and reduced cytotoxicity compared with the lead compound. CA has various advantages and can be widely used in the synthesis of natural product derivatives to enhance the properties of drug candidates or lead compounds.


Assuntos
Produtos Biológicos , Produtos Biológicos/farmacologia , Cinamatos/farmacologia , Cinamatos/química , Anti-Inflamatórios
11.
Eur J Med Chem ; 244: 114825, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36306540

RESUMO

An extensive study was performed to discover a series of novel 20(R)-panaxadiol derivatives with various substituents at the 3-OH position as nontoxic, brain-permeable, multi-target leads for treating Alzheimer's disease. In vitro analysis revealed that a compound bearing benzyl-substituted carbamate, which we denoted compound 14a, exhibited the most potent neuroprotective activity, with an EC50 of 13.17 µM. The neuroprotective effect of compound 14a was slightly more potent than that of donepezil and much more potent than that of 20(R)-panaxadiol. Compound 14a at 7.5-120 µM exhibited low toxicity in various cell lines. In addition, compound 14a exhibited a wide range of biological activities, including inhibiting apoptosis; inducing tau hyperphosphorylation; affecting beta-amyloid (Aß), ß-secretase, reactive oxygen species, tumor necrosis factor-α, cyclooxygenase-2, and interleukin-1ß production; and promoting Aß25-35 disaggregation. The effective permeability of compound 14a across the blood-brain barrier was 26.13 × 10-6 cm/s, indicating that it can provide adequate exposure in the central nervous system. Further, compound 14a improved learning, memory, and novel object recognition in mice, and in vivo toxicity experiments confirmed a good therapeutic safety range. Thus, compound 14a is a promising multifunctional lead for treating Alzheimer's disease and offers new avenues for natural product-derived anti-Alzheimer's disease drugs.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Camundongos , Animais , Inibidores da Colinesterase/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Donepezila , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Acetilcolinesterase/metabolismo , Desenho de Fármacos
12.
J Ginseng Res ; 46(6): 738-749, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36312731

RESUMO

Background: Ginseng possesses antitumor effects, and ginsenosides are considered to be one of its main active chemical components. Ginsenosides can further be hydrolyzed to generate secondary saponins, and 20(R)-panaxotriol is an important sapogenin of ginsenosides. We aimed to synthesize a new ginsengenin derivative from 20(R)-panaxotriol and investigate its antitumor activity in vivo and in vitro. Methods: Here, 20(R)-panaxotriol was selected as a precursor and was modified into its derivatives. The new products were characterized by 1H-NMR, 13C-NMR and HR-MS and evaluated by molecular docking, MTT, luciferase reporter assay, western blotting, immunofluorescent staining, colony formation assay, EdU labeling and immunofluorescence, apoptosis assay, cells migration assay, transwell assay and in vivo antitumor activity assay. Results: The derivative with the best antitumor activity was identified as 6,12-dihydroxy-4,4,8,10,14-pentamethyl-17-(2,6,6-trimethyltetrahydro-2H-pyran-2-yl)hexadecahydro-1H-cyclopenta[a]phenanthren-3-yl(tert-butoxycarbonyl)glycinate (A11). The focus of this research was on the antitumor activity of the derivatives. The efficacy of the derivative A11 (IC50 < 0.3 µM) was more than 100 times higher than that of 20(R)- panaxotriol (IC50 > 30 µM). In addition, A11 inhibited the protein expression and nuclear accumulation of the hypoxia-inducible factor HIF-1α in HeLa cells under hypoxic conditions in a dose-dependent manner. Moreover, A11 dose-dependently inhibited the proliferation, migration, and invasion of HeLa cells, while promoting their apoptosis. Notably, the inhibition by A11 was more significant than that by 20(R)-panaxotriol (p < 0.01) in vivo. Conclusion: To our knowledge, this is the first study to report the production of derivative A11 from 20(R)-panaxotriol and its superior antitumor activity compared to its precursor. Moreover, derivative A11 can be used to further study and develop novel antitumor drugs.

13.
Front Chem ; 10: 951713, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36157038

RESUMO

A series of quillaic acid derivatives with different substituents on the 28-carboxyl group were designed and synthesized. Five human cancer cell lines (HCT116, BEL7402, HepG2, SW620, and MCF-7) were evaluated for their antitumor activity in vitro. Some of the tested derivatives showed improved antiproliferative activity compared to the lead compound, quillaic acid. Among them, compound E (IC50 = 2.46 ± 0.44 µM) showed the strongest antiproliferative activity against HCT116 cells; compared with quillaic acid (IC50 > 10 µM), its efficacy against HCT116 cancer cells was approximately 4-fold higher than that of quillaic acid. Compound E also induces cell cycle arrest and apoptosis by modulating NF-κB and MAPK pathways. Therefore, the development of compound E is certainly valuable for anti-tumor applications.

14.
Org Biomol Chem ; 20(24): 4894-4899, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35678149

RESUMO

The asymmetric synthesis of multisubstituted allylic amino acid derivatives was accomplished by the allylic alkylation of a chiral glycine-based nickel complex with vinylethylene carbonates. High enantioselectivities and diastereoselectivities were obtained under mild reaction conditions. The gram-scale synthesis was carried out with a good yield and high enantioselectivity, indicating that the method is a highly efficient route to chiral multisubstituted allylic amino acid derivatives.


Assuntos
Compostos Alílicos , Níquel , Alquilação , Compostos Alílicos/química , Carbonatos/química , Catálise , Glicina , Estereoisomerismo
15.
Eur J Med Chem ; 236: 114334, 2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35429910

RESUMO

Disruption of the MDM2-p53 protein-protein interaction by small-molecule inhibitors has been highly pursued by many academic laboratories and pharmaceutical companies as a promising strategy for cancer therapy. To date, based on the explanation of the cocrystal structure of MDM2 with p53, many highly potent and selective small-molecule MDM2 inhibitors have been successfully discovered and nine of them are currently under different clinical trials for cancer therapy. Herein, we will review the function of MDM2 and provide a comprehensive and updated overview of small-molecule MDM2 inhibitors in different clinical phases for cancer therapy, especially focusing on the identification and optimization, and preclinical/clinical studies of these clinical-stage MDM2 inhibitors. Challenges regarding acquired resistance and potential toxicity of MDM2 inhibitors to normal tissues and outlook are also briefly discussed, which will further guide the design of new small-molecule MDM2 inhibitors.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/química , Humanos , Neoplasias/tratamento farmacológico , Ligação Proteica , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo
16.
Chem Commun (Camb) ; 58(40): 6000-6003, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35485419

RESUMO

We disclose an asymmetric total synthesis of prostaglandin C2 TBS ether, a derivative of an extremely sensitive natural prostaglandin C2. The key to the synthesis is a SmI2-mediated ketyl-enoate reaction that leads to the formation of the functionalized cyclopentane ring with high-level stereochemical control. Access to the crucial alkene system is realized late in the synthesis by the implementation of a Grignard addition/dehydration/metathesis sequence.


Assuntos
Éter , Prostaglandinas , Alcenos , Éteres , Estereoisomerismo
17.
Chem Commun (Camb) ; 57(88): 11657-11660, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34671793

RESUMO

We herein described a nickel-catalyzed cyclization of N-(o-ethynylaryl)acrylamides for the selective synthesis of dihydrocyclobuta[c]quinolin-3-ones and benzo[b]azocin-2-ones. The two varied products could be easily obtained by tuning the reaction temperature. This reaction features easy temperature-control, high efficiency, and gram-scale synthesis.

18.
Bioorg Chem ; 111: 104905, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33895602

RESUMO

Fifteen naphthyl-carboxamide-DAPYs were generated to explore chemical space in reverse transcriptase (RT) binding site via lead optimization strategy. They displayed up to single-digit nanomolar activity against wild-type (WT) and rilpivirine-associated resistant mutant E138K viruses, as well as potent inhibitory ability toward the RT enzyme. Compound a1 showed exceptionally inhibitory effects with an EC50 value of 3.7 nM against HIV-1 wt strain, and an EC50 of 11 nM targeting mutant E138K. The structure-activity relationships (SARs) of the newly obtained DAPYs were also investigated. Molecular docking analysis elucidated the biological activity and offered a structural insight for follow-up research.


Assuntos
Fármacos Anti-HIV/farmacologia , HIV/efeitos dos fármacos , Naftalenos/farmacologia , Pirimidinas/farmacologia , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Naftalenos/síntese química , Naftalenos/química , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade
19.
Mar Drugs ; 19(3)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809065

RESUMO

Glycogen synthase kinase 3ß (GSK-3ß) is a widely investigated molecular target for numerous diseases, and inhibition of GSK-3ß activity has become an attractive approach for the treatment of diabetes. Meridianin C, an indole-based natural product isolated from marine Aplidium meridianum, has been reported as a potent GSK-3ß inhibitor. In the present study, applying the structural-based optimization strategy, the pyrimidine group of meridianin C was modified by introducing different substituents based on the 2-aminopyrimidines-substituted pyrazolo pyridazine scaffold. Among them, compounds B29 and B30 showed a much higher glucose uptake than meridianin C (<5%) and the positive compound 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD-8, 16%), with no significant toxicity against HepG2 cells at the same time. Furthermore, they displayed good GSK-3ß inhibitory activities (IC50 = 5.85; 24.4 µM). These results suggest that these meridianin C analogues represent novel lead compounds with therapeutic potential for diabetes.


Assuntos
Glucose/metabolismo , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Indóis/farmacologia , Pirimidinas/farmacologia , Urocordados/química , Animais , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/farmacologia , Células Hep G2 , Humanos , Indóis/química , Indóis/isolamento & purificação , Pirimidinas/química , Pirimidinas/isolamento & purificação , Relação Estrutura-Atividade , Tiadiazóis/farmacologia
20.
Acta Pharm Sin B ; 10(12): 2259-2271, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33354500

RESUMO

Since accelerated metabolism produces much higher levels of reactive oxygen species (ROS) in cancer cells compared to ROS levels found in normal cells, human MutT homolog 1 (MTH1), which sanitizes oxidized nucleotide pools, was recently demonstrated to be crucial for the survival of cancer cells, but not required for the proliferation of normal cells. Therefore, dozens of MTH1 inhibitors have been developed with the aim of suppressing cancer growth by accumulating oxidative damage in cancer cells. While several inhibitors were indeed confirmed to be effective, some inhibitors failed to kill cancer cells, complicating MTH1 as a viable target for cancer eradication. In this review, we summarize the current status of developing MTH1 inhibitors as drug candidates, classify the MTH1 inhibitors based on their structures, and offer our perspectives toward the therapeutic potential against cancer through the targeting of MTH1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA