Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 25(1): 34, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38254011

RESUMO

BACKGROUND: Driver genes play a vital role in the development of cancer. Identifying driver genes is critical for diagnosing and understanding cancer. However, challenges remain in identifying personalized driver genes due to tumor heterogeneity of cancer. Although many computational methods have been developed to solve this problem, few efforts have been undertaken to explore gene-patient associations to identify personalized driver genes. RESULTS: Here we propose a method called LPDriver to identify personalized cancer driver genes by employing linear neighborhood propagation model on individual genetic data. LPDriver builds personalized gene network based on the genetic data of individual patients, extracts the gene-patient associations from the bipartite graph of the personalized gene network and utilizes a linear neighborhood propagation model to mine gene-patient associations to detect personalized driver genes. The experimental results demonstrate that as compared to the existing methods, our method shows competitive performance and can predict cancer driver genes in a more accurate way. Furthermore, these results also show that besides revealing novel driver genes that have been reported to be related with cancer, LPDriver is also able to identify personalized cancer driver genes for individual patients by their network characteristics even if the mutation data of genes are hidden. CONCLUSIONS: LPDriver can provide an effective approach to predict personalized cancer driver genes, which could promote the diagnosis and treatment of cancer. The source code and data are freely available at https://github.com/hyr0771/LPDriver .


Assuntos
Neoplasias , Oncogenes , Humanos , Mutação , Redes Reguladoras de Genes , Modelos Lineares , Pacientes , Neoplasias/genética
2.
Vet Med Sci ; 9(3): 1134-1142, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36913179

RESUMO

BACKGROUND: Adipose-derived mesenchymal stem cells (ADMSCs) and their extracellular vesicles (EVs) are a promising source of therapies for ischaemia-reperfusion (IR) because of their potent anti-inflammatory and immunomodulatory properties. OBJECTIVES: The aims of this study were to explore the therapeutic efficacy and potential mechanism of ADMSC-EVs in canine renal IR injury. METHODS: Mesenchymal stem cells (MSCs) and EVs were isolated and characterised for surface markers. A canine IR model administered with ADMSC-EVs was used to evaluate therapeutic effects on inflammation, oxidative stress, mitochondrial damage and apoptosis. RESULTS: CD105, CD90 and beta integrin ITGB were positively expressed in MSCs, while CD63, CD9 and intramembrane marker TSG101 were positively expressed in EVs. Compared with the IR model group, there was less mitochondrial damage and reduction in quantity of mitochondria in the EV treatment group. Renal IR injury led to severe histopathological lesions and significant increases in biomarkers of renal function, inflammation and apoptosis, which were attenuated by the administration of ADMSC-EVs. CONCLUSIONS: Secretion of EVs by ADMSCs exhibited therapeutic potential in renal IR injury and may lead to a cell-free therapy for canine renal IR injury. These findings revealed that canine ADMSC-EVs potently attenuate renal IR injury-induced renal dysfunction, inflammation and apoptosis, possibly by reducing mitochondrial damage.


Assuntos
Doenças do Cão , Vesículas Extracelulares , Células-Tronco Mesenquimais , Traumatismo por Reperfusão , Animais , Cães , Rim/fisiologia , Vesículas Extracelulares/patologia , Inflamação/veterinária , Traumatismo por Reperfusão/terapia , Traumatismo por Reperfusão/veterinária , Traumatismo por Reperfusão/patologia , Doenças do Cão/patologia
3.
ACS Omega ; 6(26): 17095-17102, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34250366

RESUMO

Calcium batteries are promising alternatives to lithium batteries owing to their high energy density, comparable reduction potential, and mineral abundance. However, to meet practical demands in high-performance applications, suitable electrolytes must be developed. Here, we report the synthesis and characterization of polymer gel electrolytes for calcium-ion conduction prepared by the photo-cross-linking of poly(ethylene glycol) diacrylate (PEGDA) in the presence of solutions of calcium salts in a mixture of ethylene carbonate (EC) and propylene carbonate (PC) solvents. The results show room-temperature conductivity between 10-5 and 10-4 S/cm, electrochemical stability windows of ∼3.8 V, full dissociation of the salt, and minimal coordination with the PEGDA backbone. Cycling in symmetric Ca metal cells proceeds but with increasing overpotentials, which can be attributed to interfacial impedance between the electrolyte and calcium surface, which inhibits charge transfer. Calcium may still be plated and stripped yielding high-purity deposits and no indication of significant electrolyte breakdown, indicating that high overpotentials are associated with an electrically insulating, yet ion-permeable solid electrolyte interface (SEI). This work provides a contribution to the study and understanding of polymer gel materials toward their improvement and application as electrolytes for calcium batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA