Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Injury ; 55(10): 111755, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39098255

RESUMO

OBJECTIVE: The clinical effects of artificial dermis in treating skin and soft tissue defects accompanied by bone or tendon exposure were assessed. APPROACH: A retrospective analysis was conducted on the clinical data of 45 cases of skin and soft tissue defects accompanied by bone or tendon exposure admitted to the trauma surgery department of Fujian Provincial Hospital between February 2018 and August 2020. They were divided into the artificial dermis and control groups. The wound was assessed using the Vancouver Scar Scale (mVSS), and the postoperative visual analogue scale (VAS) scores were recorded at 3, 6, 9, and 12 months after surgery. At the 12-month after surgery, skin sensation recovery was evaluated using the criteria of the British Medical Research Council (BMRC). RESULTS: The cases included 26 males and 19 females, aged 50 to 85 years. All patients were followed up for an average of 13.8 months (range: 12-18 months). Compared with controls, the wound healing time of the observation group was longer (35.8 ± 10.6 vs. 28.5 ± 4.8, P = 0.007), without significant differences for the number of operations and length of hospitalization. The mVSS scores were not different between groups (Pgroup = 0.294), but the scores decreased with time (Ptime < 0.001), and the group×time interaction was significant (Pinteraction < 0.001). Similarly, the VAS scores were not different between groups (Pgroup = 0.667), but the scores decreased with time (Ptime < 0.001); the group×time interaction was not significant (Pinteraction = 0.274). At the 12-month mark following the operation, in the artificial dermis group, the MCRR score was S3+ in 23 patients, while it ranged from S0 to S3 in two patients; in the control group, S3+ was observed in 17 patients, and S0-S3 in three (P = 0.815). CONCLUSION: Artificial dermis treatment is considered a safe and effective alternative therapy for patients with skin and soft tissue defects accompanied by bone or tendon exposure who cannot tolerate or are unwilling to undergo autologous skin flap transplantation. It offers the advantages of minimal donor site trauma, simplicity in operation, and favorable postoperative functional recovery.


Assuntos
Transplante de Pele , Pele Artificial , Lesões dos Tecidos Moles , Cicatrização , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Estudos Retrospectivos , Lesões dos Tecidos Moles/cirurgia , Idoso de 80 Anos ou mais , Resultado do Tratamento , Transplante de Pele/métodos , Procedimentos de Cirurgia Plástica/métodos , Cicatriz
2.
Acta Ortop Bras ; 32(3): e269705, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39119246

RESUMO

Objective: Tibial plateau fractures are common intra-articular fractures that pose classification and treatment challenges for orthopedic surgeons. Objective: This study examines the value of 3D printing for classifying and planning surgery for complex tibial plateau fractures. Methods: We reviewed 54 complex tibial plateau fractures treated at our hospital from January 2017 to January 2019. Patients underwent preoperative spiral CT scans, with DICOM data processed using Mimics software. 3D printing technology created accurate 1:1 scale models of the fractures. These models helped subdivide the fractures into seven types based on the tibial plateau's geometric planes. Surgical approaches and simulated operations, including fracture reduction and plate placement, were planned using these models. Results: The 3D models accurately depicted the direction and extent of fracture displacement and plateau collapse. They facilitated the preoperative planning, allowing for precise reconstruction strategies and matching intraoperative details with the pre-printed models. Post-surgery, the anatomical structure of the tibial plateau was significantly improved in all 54 cases. Conclusion: 3D printing effectively aids in the classification and preoperative planning of complex tibial plateau fractures, enhancing surgical outcomes and anatomical restoration. Level of Evidence IV, Prospective Study.


Objetivo: As fraturas do planalto tibial são fraturas intra-articulares comuns de classificação e tratamento desafiadores aos cirurgiões ortopédicos. Objetivo: Este estudo investiga o uso de impressão 3D para classificar e planejar a cirurgia de fraturas complexas do planalto tibial. Métodos: 54 fraturas complexas do planalto tibial tratadas em nosso hospital de janeiro de 2017 a janeiro de 2019 foram revisadas. Os pacientes foram submetidos a tomografias computadorizadas em espiral pré-operatórias, com dados DICOM processados usando o software Mimics. A tecnologia de impressão 3D gerou modelos precisos em escala 1:1 das fraturas. Estes modelos ajudaram a subdividir as fraturas em sete tipos com base nos planos geométricos do planalto tibial. As abordagens cirúrgicas e as operações simuladas, incluindo a redução da fratura e a colocação de placa, foram planejadas utilizando estes modelos. Resultados: Os modelos 3D representaram com precisão a direção e a extensão da deslocação da fratura e do colapso do planalto. Os modelos facilitaram o planejamento pré-operatório, viabilizando estratégias de reconstrução precisas e a correspondência dos detalhes intraoperatórios com os modelos pré-impressos. Após a cirurgia, a estrutura anatômica do planalto tibial melhorou significativamente em todos os 54 casos. Conclusão: A impressão 3D ajuda na classificação e no planejamento pré-operatório de fraturas complexas do planalto tibial, melhorando os resultados cirúrgicos e a restauração anatômica. Nível de Evidência IV, Estudo Prospectivo.

3.
Acta ortop. bras ; Acta ortop. bras;32(3): e269705, 2024. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1568749

RESUMO

ABSTRACT Objective: Tibial plateau fractures are common intra-articular fractures that pose classification and treatment challenges for orthopedic surgeons. Objective: This study examines the value of 3D printing for classifying and planning surgery for complex tibial plateau fractures. Methods: We reviewed 54 complex tibial plateau fractures treated at our hospital from January 2017 to January 2019. Patients underwent preoperative spiral CT scans, with DICOM data processed using Mimics software. 3D printing technology created accurate 1:1 scale models of the fractures. These models helped subdivide the fractures into seven types based on the tibial plateau's geometric planes. Surgical approaches and simulated operations, including fracture reduction and plate placement, were planned using these models. Results: The 3D models accurately depicted the direction and extent of fracture displacement and plateau collapse. They facilitated the preoperative planning, allowing for precise reconstruction strategies and matching intraoperative details with the pre-printed models. Post-surgery, the anatomical structure of the tibial plateau was significantly improved in all 54 cases. Conclusion: 3D printing effectively aids in the classification and preoperative planning of complex tibial plateau fractures, enhancing surgical outcomes and anatomical restoration. Level of Evidence IV, Prospective Study.


RESUMO Objetivo: As fraturas do planalto tibial são fraturas intra-articulares comuns de classificação e tratamento desafiadores aos cirurgiões ortopédicos. Objetivo: Este estudo investiga o uso de impressão 3D para classificar e planejar a cirurgia de fraturas complexas do planalto tibial. Métodos: 54 fraturas complexas do planalto tibial tratadas em nosso hospital de janeiro de 2017 a janeiro de 2019 foram revisadas. Os pacientes foram submetidos a tomografias computadorizadas em espiral pré-operatórias, com dados DICOM processados usando o software Mimics. A tecnologia de impressão 3D gerou modelos precisos em escala 1:1 das fraturas. Estes modelos ajudaram a subdividir as fraturas em sete tipos com base nos planos geométricos do planalto tibial. As abordagens cirúrgicas e as operações simuladas, incluindo a redução da fratura e a colocação de placa, foram planejadas utilizando estes modelos. Resultados: Os modelos 3D representaram com precisão a direção e a extensão da deslocação da fratura e do colapso do planalto. Os modelos facilitaram o planejamento pré-operatório, viabilizando estratégias de reconstrução precisas e a correspondência dos detalhes intraoperatórios com os modelos pré-impressos. Após a cirurgia, a estrutura anatômica do planalto tibial melhorou significativamente em todos os 54 casos. Conclusão: A impressão 3D ajuda na classificação e no planejamento pré-operatório de fraturas complexas do planalto tibial, melhorando os resultados cirúrgicos e a restauração anatômica. Nível de Evidência IV, Estudo Prospectivo.

4.
Front Bioeng Biotechnol ; 9: 798584, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35087800

RESUMO

ORAL squamous cell carcinoma (OSCC) is a malignant tumor with the highest incidence among tumors involving the oral cavity maxillofacial region, and is notorious for its high recurrence and metastasis potential. Long non-coding RNAs (lncRNAs), which regulate the genesis and evolution of cancers, are potential prognostic biomarkers. This study identified HOTAIRM1 as a novel significantly upregulated lncRNA in OSCC, which is strongly associated with unfavorable prognosis of OSCC. Systematic bioinformatics analyses demonstrated that HOTAIRM1 was closely related to tumor stage, overall survival, genome instability, the tumor cell stemness, the tumor microenvironment, and immunocyte infiltration. Using biological function prediction methods, including Weighted gene co-expression network analysis (WGCNA), Gene set enrichment analysis (GSEA), and Gene set variation analysis (GSVA), HOTAIRM1 plays a pivotal role in OSCC cell proliferation, and is mainly involved in the regulation of the cell cycle. In vitro, cell loss-functional experiments confirmed that HOTAIRM1 knockdown significantly inhibited the proliferation of OSCC cells, and arrested the cell cycle in G1 phase. At the molecular level, PCNA and CyclinD1 were obviously reduced after HOTAIRM1 knockdown. The expression of p53 and p21 was upregulated while CDK4 and CDK6 expression was decreased by HOTAIRM1 knockdown. In vivo, knocking down HOTAIRM1 significantly inhibited tumor growth, including the tumor size, weight, volume, angiogenesis, and hardness, monitored by ultrasonic imaging and magnetic resonance imaging In summary, our study reports that HOTAIRM1 is closely associated with tumorigenesis of OSCC and promotes cell proliferation by regulating cell cycle. HOTAIRM1 could be a potential prognostic biomarker and a therapeutic target for OSCC.

5.
Cancer Biol Ther ; 20(9): 1270-1280, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31161900

RESUMO

Oral squamous cell carcinoma (OSCC), the subtype of head and neck cancers, is notorious for its high incidence and death rate. The role of long non-coding RNAs (lncRNAs) is discovered to be significant for the canceration and cancer progression. Long intergenic non-protein coding RNA 958 (LINC00958) is discovered as a carcinogene in multiple cancers, such as gastric cancer, pancreatic cancer, and glioma, but there has been no report about how LINC00958 functions in OSCC. The objective of our study is to unfold function and mechanism investigation on LINC00958 in OSCC. First, TCGA database showed the upregulation and prognostic significance of LINC00958 in head and neck squamous carcinoma. Then, we discovered in OSCC clinical samples that LINC00958 presented high expression and predicted poor prognosis. Also, LINC00958 was elevated in OSCC cells. In vitro gain- and loss-function experiments proved that LINC00958 facilitated cell growth, retarded apoptosis, accelerated migration, and epithelial-to-mesenchymal transition (EMT) in OSCC. Mechanistically, we confirmed the cytoplasmic expression of LINC00958 in OSCC cells, and revealed that LINC00958 sequestered miR-627-5p to upregulate YBX2 expression. Rescue assays indicated that LINC00958 regulated OSCC cell proliferation, motility and EMT through YBX2. Together, we showed that LINC00958 promoted OSCC progression through miR-627-5p/YBX2 axis, indicating LINC00958 as a new prognostic marker, and provided new perspectives for molecular targeted treatment for OSCC.


Assuntos
Carcinoma de Células Escamosas/genética , MicroRNAs/genética , Neoplasias Bucais/genética , RNA Longo não Codificante , Proteínas de Ligação a RNA/genética , Regiões 3' não Traduzidas , Apoptose/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Bucais/patologia , Interferência de RNA
6.
Int Immunopharmacol ; 40: 524-529, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27764743

RESUMO

Oroxylin A, a natural flavonoid isolated from the medicinal herb Scutellaria baicalensis Georgi, has been reported to have anti-inflammatory and antioxidant properties. However, the effect of oroxylin A on cigarette smoke (CS)-induced lung inflammation remains unclear. In this study, the ability of oroxylin A to protect against CS-induced lung inflammation was detected in vivo and in vitro. Oroxylin A was administered intraperitoneally to mice 2h prior CS exposure every day for five consecutive days. BEAS-2B bronchial epithelial cells and RAW264.7 cells were used to investigate the molecular mechanism of oroxylin A in vitro. In vivo, the results showed that oroxylin A dose-dependently attenuated CS-induced lung histopathologic changes, expression of cytokines TNF-α, IL-1ß, and MCP-1, and levels of oxidative biomarkers 3-nitrotyrosine and 8-isoprostane. Meanwhile, oroxylin A up-regulated GSH level and glutathione reductase (GR) activity in lung tissues. In vitro, oroxylin A significantly up-regulated Nrf2 expression and total cellular glutathione level in cigarette smoke extract (CSE)-stimulated cells. In addition, oroxylin A promoted Nrf2 binding to antioxidant response element (ARE) and up-regulated ARE-regulated gene such as heme oxygenase-1 (HO-1), GPx, and GR in CSE-stimulated cells. Oroxylin A could protect both epithelial cells and macrophages from damage by cigarette smoke in vitro. Taken together, these data indicated that oroxylin A attenuated oxidative stress and lung inflammation induced by CS via activating Nrf2 signaling pathway. Oroxylin A may be a protective agent against CS-induced lung inflammation and chronic obstructive pulmonary disease.


Assuntos
Anti-Inflamatórios/uso terapêutico , Células Epiteliais/efeitos dos fármacos , Flavonoides/uso terapêutico , Macrófagos/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Pneumonia/tratamento farmacológico , Scutellaria baicalensis/imunologia , Animais , Citocinas/metabolismo , Células Epiteliais/patologia , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Macrófagos/patologia , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/genética , Pneumonia/induzido quimicamente , Células RAW 264.7 , Fumar/efeitos adversos , Ativação Transcricional/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA