Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
Stroke Vasc Neurol ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485231

RESUMO

BACKGROUND: Astrocytes regulate blood-brain barrier (BBB) integrity, whereas subarachnoid haemorrhage (SAH) results in astrocyte dysregulation and BBB disruption. Here, we explored the involvement of tissue inhibitor of matrix metalloprotease-1 (TIMP1) in astrocyte-mediated BBB protection during SAH, along with its underlying mechanisms. METHODS: C57BL/6J mice were used to establish a model of SAH. The effects of TIMP1 on SAH outcomes were analysed by intraperitoneal injection of recombinant mouse TIMP1 protein (rm-TIMP1; 250 µg/kg). The roles of TIMP1 and its effector ß1-integrin on astrocytes were observed by in vivo transduction with astrocyte-targeted adeno-associated virus carrying TIMP1 overexpression plasmid or ß1-integrin RNAi. The molecular mechanisms underlying TIMP1 and ß1-integrin interactions were explored in primary cultured astrocytes stimulated with red blood cells (RBCs). RESULTS: TIMP1 was upregulated after SAH. Administration of rm-TIMP1 mitigated SAH-induced early brain injury (EBI) in male and female mice. TIMP1 was primarily expressed in astrocytes; its overexpression in astrocytes led to increased ß1-integrin expression in astrocytes, along with the preservation of astrocytic endfoot attachment to the endothelium and subsequent recovery of endothelial tight junctions. All of these effects were reversed by the knockdown of ß1-integrin in astrocytes. Molecular analysis showed that TIMP1 overexpression decreased the RBC-induced ubiquitination of ß1-integrin; this effect was partially achieved by inhibiting the interaction between ß1-integrin and the E3 ubiquitin ligase Trim21. CONCLUSION: TIMP1 inhibits the interaction between ß1-integrin and Trim21 in astrocytes, thereby rescuing the ubiquitination of astrocytic ß1-integrin. It subsequently restores interactions between astrocytic endfeet and the endothelium, as well as BBB integrity, eventually mitigating SAH-induced EBI.

2.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38447133

RESUMO

Methane (CH4) and nitrous oxide (N2O) are major greenhouse gases that are predominantly generated by microbial activities in anoxic environments. N2O inhibition of methanogenesis has been reported, but comprehensive efforts to obtain kinetic information are lacking. Using the model methanogen Methanosarcina barkeri strain Fusaro and digester sludge-derived methanogenic enrichment cultures, we conducted growth yield and kinetic measurements and showed that micromolar concentrations of N2O suppress the growth of methanogens and CH4 production from major methanogenic substrate classes. Acetoclastic methanogenesis, estimated to account for two-thirds of the annual 1 billion metric tons of biogenic CH4, was most sensitive to N2O, with inhibitory constants (KI) in the range of 18-25 µM, followed by hydrogenotrophic (KI, 60-90 µM) and methylotrophic (KI, 110-130 µM) methanogenesis. Dissolved N2O concentrations exceeding these KI values are not uncommon in managed (i.e. fertilized soils and wastewater treatment plants) and unmanaged ecosystems. Future greenhouse gas emissions remain uncertain, particularly from critical zone environments (e.g. thawing permafrost) with large amounts of stored nitrogenous and carbonaceous materials that are experiencing unprecedented warming. Incorporating relevant feedback effects, such as the significant N2O inhibition on methanogenesis, can refine climate models and improve predictive capabilities.


Assuntos
Gases de Efeito Estufa , Gases de Efeito Estufa/análise , Óxido Nitroso/análise , Ecossistema , Retroalimentação , Dióxido de Carbono/análise , Solo , Metano/análise
3.
Adv Sci (Weinh) ; 11(15): e2304609, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342629

RESUMO

Accumulating evidence suggests that changes in the tumor microenvironment caused by radiotherapy are closely related to the recurrence of glioma. However, the mechanisms by which such radiation-induced changes are involved in tumor regrowth have not yet been fully investigated. In the present study, how cranial irradiation-induced senescence in non-neoplastic brain cells contributes to glioma progression is explored. It is observed that senescent brain cells facilitated tumor regrowth by enhancing the peripheral recruitment of myeloid inflammatory cells in glioblastoma. Further, it is identified that astrocytes are one of the most susceptible senescent populations and that they promoted chemokine secretion in glioma cells via the senescence-associated secretory phenotype. By using senolytic agents after radiotherapy to eliminate these senescent cells substantially prolonged survival time in preclinical models. The findings suggest the tumor-promoting role of senescent astrocytes in the irradiated glioma microenvironment and emphasize the translational relevance of senolytic agents for enhancing the efficacy of radiotherapy in gliomas.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/genética , Astrócitos/patologia , Senoterapia , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Microambiente Tumoral
4.
J Exp Clin Cancer Res ; 43(1): 39, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38303029

RESUMO

BACKGROUND: Ubiquitination plays an important role in proliferating and invasive characteristic of glioblastoma (GBM), similar to many other cancers. Tripartite motif 25 (TRIM25) is a member of the TRIM family of proteins, which are involved in tumorigenesis through substrate ubiquitination. METHODS: Difference in TRIM25 expression levels between nonneoplastic brain tissue samples and primary glioma samples was demonstrated using publicly available glioblastoma database, immunohistochemistry, and western blotting. TRIM25 knockdown GBM cell lines (LN229 and U251) and patient derived GBM stem-like cells (GSCs) GBM#021 were used to investigate the function of TRIM25 in vivo and in vitro. Co-immunoprecipitation (Co-IP) and mass spectrometry analysis were performed to identify NONO as a protein that interacts with TRIM25. The molecular mechanisms underlying the promotion of GBM development by TRIM25 through NONO were investigated by RNA-seq and validated by qRT-PCR and western blotting. RESULTS: We observed upregulation of TRIM25 in GBM, correlating with enhanced glioblastoma cell growth and invasion, both in vitro and in vivo. Subsequently, we screened a panel of proteins interacting with TRIM25; mass spectrometry and co-immunoprecipitation revealed that NONO was a potential substrate of TRIM25. TRIM25 knockdown reduced the K63-linked ubiquitination of NONO, thereby suppressing the splicing function of NONO. Dysfunctional NONO resulted in the retention of the second intron in the pre-mRNA of PRMT1, inhibiting the activation of the PRMT1/c-MYC pathway. CONCLUSIONS: Our study demonstrates that TRIM25 promotes glioblastoma cell growth and invasion by regulating the PRMT1/c-MYC pathway through mediation of the splicing factor NONO. Targeting the E3 ligase activity of TRIM25 or the complex interactions between TRIM25 and NONO may prove beneficial in the treatment of GBM.


Assuntos
Glioblastoma , Fatores de Transcrição , Proteínas com Motivo Tripartido , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/metabolismo , Glioblastoma/patologia , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Processamento de RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
5.
Cancers (Basel) ; 16(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38398231

RESUMO

The mesenchymal (MES) phenotype of glioblastoma (GBM) is the most aggressive and therapy-resistant subtype of GBM. The MES phenotype transition during tumor progression results from both tumor-intrinsic genetic alterations and tumor-extrinsic microenvironmental factors. In this study, we sought to identify genes that can modulate the MES phenotype via both mechanisms. By integrating weighted gene co-expression network analysis (WGCNA) and the differential expression analysis of hypoxia-immunosuppression-related genes, we identified the plasminogen activator, urokinase receptor (PLAUR) as the hub gene. Functional enrichment analysis and GSVA analysis demonstrated that PLAUR was associated with the MES phenotype of glioma and the hypoxia-immunosuppression-related microenvironmental components. Single-cell sequencing analysis revealed that PLAUR mediated the ligand-receptor interaction between tumor-associated macrophages (TAMs) and glioma cells. Functional experiments in vitro with cell lines or primary glioma cells and xenograft models using BALB/c nude mice confirmed the role of PLAUR in promoting the MES phenotype of GBM. Our findings indicate that PLAUR regulates both glioma cells and tumor cell-extrinsic factors that favor the MES phenotype and suggest that PLAUR might be a potential target for GBM therapy.

6.
Environ Pollut ; 347: 123433, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38278405

RESUMO

The COVID-19 pandemic has resulted in a substantial surge in the usage of disposable plastic masks, generating a significant volume of waste and contributing to environmental pollution. Wetland ecosystems function as crucial repositories for terrestrial pollutants and are highly effective in retaining disposable masks composed mainly of PP material. These masks can endure extended periods in wetlands, experiencing natural degradation that may have potential implications on wetland ecosystems. Our findings demonstrate the natural aging process of disposable masks, resulting in the generation of microplastics (MPs) ranging in diameter from 10 to 30 µm over a 180-day timeframe. Examination of 16S rDNA data unveiled temporal fluctuations in microbial diversity in the wetland ecosystem. Initially, microbial diversity displayed a modest incline, which was succeeded by a subsequent decrease. With the progressive accumulation of plastic within the wetland, an ongoing decline in microbial diversity linked to nitrogen transformation was observed. This study provides valuable insights into the retention of disposable masks by wetlands amidst the COVID-19 pandemic, along with their consequential effects on wetland ecosystems, specifically pertaining to nitrogen cycling. It underscores the urgency of augmenting the safeguarding measures for wetland ecosystems.


Assuntos
COVID-19 , Microbiota , Humanos , Áreas Alagadas , Ecossistema , Polipropilenos , Pandemias , Plásticos , Envelhecimento , Nitrogênio
7.
Neurol Sci ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285326

RESUMO

BACKGROUND: Moyamoya disease (MMD) is a chronic ischemic cerebrovascular disease. Collateral circulation in MMD has emerged as a research focus. Our aims were to assess the impact of anastomoses between the anterior and posterior circulations on the prognosis of MMD patients. METHODS: We reviewed the preoperative digital subtraction angiography images of patients with MMD who underwent revascularization surgery at our hospital between March 2014 and May 2020 and divided the patients into two groups: those with anastomoses (PtoA group) and those without anastomoses (non-PtoA group). The differences in follow-up (more than 6 months) collateral vessel establishment (Matsushima grade) and the modified Rankin Scale (mRS) were compared between the two groups as well as between the patients with different degrees of anastomoses. The early complications following revascularization were also compared between the two groups. RESULTS: This study included 104 patients with MMD, of which 38 were non-PtoA and 66 were PtoA. There were no significant differences in Matsushima score (P = 0.252) and mRS score (P = 0.066) between the two groups. In addition, Matsushima score (P = 0.243) and mRS score (P = 0.360) did not differ significantly between patients with different degrees of anastomoses. However, the non-PtoA group had a significantly higher rate of cerebral hyperperfusion syndrome (CHS) than the PtoA group (34.2% vs 16.7%, P = 0.041). CONCLUSION: MMD patients without anastomoses between anterior and posterior circulations preoperatively should be vigilant of the occurrence of CHS in the early stages after revascularization.

8.
Technol Cancer Res Treat ; 23: 15330338231225861, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38225189

RESUMO

The development of 1,8-naphthalimide derivatives as cell probes, DNA targeting agents, and anti-tumor drugs is one of the research hotspots in the field of medicine. Naphthalimide compounds are a kind of DNA embedder, which can change the topological structure of DNA by embedding in the middle of DNA base pairs, and then affect the recognition and action of topoisomerase on DNA. Aminofide and mitonafide are the first 2 drugs to undergo clinical trials. They have good DNA insertion ability, can embed DNA double-stranded structure, and induce topoisomerase II to cut part of pBR322DNA, but not yet entered the market due to their toxicity. In this paper, the design and structure-activity relationship of mononaphthalimide and bisaphthalimide compounds were studied, and the relationship between the structure of naphthalimide and anti-tumor activity was analyzed and discussed. It was found that a variety of structural modifications were significant in improving anti-tumor activity and reducing toxicity.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Naftalimidas/farmacologia , Naftalimidas/química , Naftalimidas/uso terapêutico , Relação Estrutura-Atividade , Neoplasias/tratamento farmacológico , Neoplasias/genética , DNA/genética , DNA/química , DNA/uso terapêutico , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral
9.
Adv Sci (Weinh) ; 11(5): e2304755, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38010945

RESUMO

Tumor heterogeneity and its drivers impair tumor progression and cancer therapy. Single-cell RNA sequencing is used to investigate the heterogeneity of tumor ecosystems. However, most methods of scRNA-seq amplify the termini of polyadenylated transcripts, making it challenging to perform total RNA analysis and somatic mutation analysis.Therefore, a high-throughput and high-sensitivity method called snHH-seq is developed, which combines random primers and a preindex strategy in the droplet microfluidic platform. This innovative method allows for the detection of total RNA in single nuclei from clinically frozen samples. A robust pipeline to facilitate the analysis of full-length RNA-seq data is also established. snHH-seq is applied to more than 730 000 single nuclei from 32 patients with various tumor types. The pan-cancer study enables it to comprehensively profile data on the tumor transcriptome, including expression levels, mutations, splicing patterns, clone dynamics, etc. New malignant cell subclusters and exploring their specific function across cancers are identified. Furthermore, the malignant status of epithelial cells is investigated among different cancer types with respect to mutation and splicing patterns. The ability to detect full-length RNA at the single-nucleus level provides a powerful tool for studying complex biological systems and has broad implications for understanding tumor pathology.


Assuntos
Ecossistema , Neoplasias , Humanos , Análise de Sequência de RNA/métodos , RNA-Seq/métodos , Neoplasias/genética , RNA/genética
10.
J Neuroinflammation ; 20(1): 294, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071333

RESUMO

Skull bone marrow is thought to be an immune tissue closely associated with the central nervous system (CNS). Recent studies have focused on the role of skull bone marrow in central nervous system disorders. In this study, we performed single-cell RNA sequencing on ipsilateral and contralateral skull bone marrow cells after experimental stroke and then performed flow cytometry and analysis of cytokine expression. Skull marrow showed lateralization in response to stroke. Lateralization is demonstrated primarily by the proliferation and differentiation of myeloid and lymphoid lineage cells in the skull bone marrow adjacent to the ischemic region, with an increased proportion of neutrophils compared to monocytes. Analysis of chemokines in the skull revealed marked differences in chemotactic signals between the ipsilateral and contralateral skull, whereas sympathetic signals innervating the skull did not affect cranial bone marrow lateralization. Osteopontin (OPN) is involved in region-specific activation of the skull marrow that promotes inflammation in the meninges, and inhibition of OPN expression improves neurological function.


Assuntos
Medula Óssea , Osteopontina , Acidente Vascular Cerebral , Animais , Camundongos , Isquemia , Osteopontina/metabolismo , Crânio/metabolismo
11.
Chin J Physiol ; 66(6): 546-557, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38149567

RESUMO

Colorectal cancer (CRC) is a malignant tumor of the gastrointestinal tract that significantly impacts the health of patients and lacks promising methods of diagnosis. Tumor-associated macrophages (TAMs) are involved in CRC progression, and their function is regulated by long non-coding RNAs (lncRNAs). The lncRNA NBR2 was recently reported as an oncogene, whose function in CRC remains uncertain. The present study aimed to investigate the biological function of lncRNA NBR2 in the progression of CRC and its underlying molecular mechanisms. Ten pairs of clinical CRC and para-carcinoma tissues were collected to determine the expression levels of lncRNA NBR2 and miR-19a, and the polarization state of TAMs. Quantitative reverse transcriptase-polymerase chain reaction was used to evaluate the expression of miR-19a, and western blotting was used to determine the expression levels of tumor necrosis factor-α, human leukocyte antigen-DR, arginase-1, CD163, CD206, interleukin-4, AMP-activated protein kinase (AMPK), p-AMPK, hypoxia-inducible factor-1α (HIF-1α), protein kinase B (AKT), p-AKT, mechanistic target of rapamycin (mTOR), and p-mTOR in TAMs. The proliferative ability of HCT-116 cells was detected using the CCK8 assay, and the migratory ability of HCT-116 cells was evaluated using the Transwell assay. The interaction between lncRNA NBR2 and miR-19a was determined using the luciferase assay. The lncRNA NBR2 was downregulated and miR-19a was highly expressed in CRC cells, accompanied by a high M2 polarization. Downregulated miR-19a promoted M1 polarization, activated AMPK, suppressed HIF-1α and AKT/mTOR signaling pathways, and promoted antitumor properties in NBR2-overexpressed TAMs, which were all reversed by the introduction of the miR-19a mimic. LncRNA NBR2 was verified to target miR-19a in macrophages according to the results of the luciferase assay. Collectively, lncRNA NBR2 may suppress the progression of CRC by downregulating miR-19a to regulate M2 macrophage polarization.


Assuntos
Neoplasias Colorretais , MicroRNAs , RNA Longo não Codificante , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Luciferases/metabolismo , Macrófagos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Serina-Treonina Quinases TOR/metabolismo
12.
J Neuroinflammation ; 20(1): 270, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978532

RESUMO

BACKGROUND: Subarachnoid hemorrhage (SAH) is an uncommon type of potentially fatal stroke. The pathophysiological mechanisms of brain injury remain unclear, which hinders the development of drugs for SAH. We aimed to investigate the pathophysiological mechanisms of SAH and to elucidate the cellular and molecular biological response to SAH-induced injury. METHODS: A cross-species (human and mouse) multiomics approach combining high-throughput data and bioinformatic analysis was used to explore the key pathophysiological processes and cells involved in SAH-induced brain injury. Patient data were collected from the hospital (n = 712). SAH was established in adult male mice via endovascular perforation, and flow cytometry, a bone marrow chimera model, qPCR, and microglial depletion experiments were conducted to explore the origin and chemotaxis mechanism of the immune cells. To investigate cell effects on SAH prognosis, murine neurological function was evaluated based on a modified Garcia score, pole test, and rotarod test. RESULTS: The bioinformatics analysis confirmed that inflammatory and immune responses were the key pathophysiological processes after SAH. Significant increases in the monocyte levels were observed in both the mouse brains and the peripheral blood of patients after SAH. Ly6C-high monocytes originated in the bone marrow, and the skull bone marrow contribute a higher proportion of these monocytes than neutrophils. The mRNA level of Ccl2 was significantly upregulated after SAH and was greater in CD11b-positive than CD11b-negative cells. Microglial depletion, microglial inhibition, and CCL2 blockade reduced the numbers of Ly6C-high monocytes after SAH. With CCR2 antagonization, the neurological function of the mice exhibited a slow recovery. Three days post-SAH, the monocyte-derived dendritic cell (moDC) population had a higher proportion of TNF-α-positive cells and a lower proportion of IL-10-positive cells than the macrophage population. The ratio of moDCs to macrophages was higher on day 3 than on day 5 post-SAH. CONCLUSIONS: Inflammatory and immune responses are significantly involved in SAH-induced brain injury. Ly6C-high monocytes derived from the bone marrow, including the skull bone marrow, infiltrated into mouse brains via CCL2 secreted from microglia. Moreover, Ly6C-high monocytes alleviated neurological dysfunction after SAH.


Assuntos
Lesões Encefálicas , Acidente Vascular Cerebral , Hemorragia Subaracnóidea , Humanos , Camundongos , Masculino , Animais , Monócitos , Hemorragia Subaracnóidea/complicações , Lesões Encefálicas/etiologia , Macrófagos , Camundongos Endogâmicos C57BL
13.
Medicine (Baltimore) ; 102(44): e34780, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37933077

RESUMO

RATIONALE: Autoimmunity targeting glutamic acid decarboxylase 65 (GAD65) is associated with type 1 diabetes mellitus as well as various neurological diseases. In the central nervous system, GAD65 autoimmunity usually presents with limbic encephalitis, whereas extralimbic encephalitis (ELE) has only been reported in a few cases. Moreover, anti-GAD65 ELE in the paraneoplastic context has not yet been reported. PATIENT CONCERNS: A 60-year-old man presented with intermittent cough and sputum for 10 years, with no other diseases. The patient presented with recurrent seizures that were resistant to antiepileptic drugs (AEDs). Chest computed tomography and pathological results confirmed the diagnosis of small cell lung cancer. Paraneoplastic testing found a high level of GAD65 antibodies in his serum, and cerebrospinal fluid analysis revealed lymphocytic pleocytosis, indicating autoimmune encephalitis. Brain magnetic resonance imaging showed multifocal T2 fluid-attenuated inversion recovery hyperintensities in the extralimbic areas including the subcortex and deep white matter of the bilateral frontal lobe, parietal lobe, and insula lobes. DIAGNOSES: Finally, a diagnosis of anti-GAD65 autoimmune ELE with a paraneoplastic etiology from the small cell lung cancer was suspected. INTERVENTIONS: The patient refused any tumor-suppressive treatment or immunotherapy for potential side effects and only received AEDs levetiracetam, sodium valproate, and diazepam. OUTCOMES: The epilepsy of the patient was resistant to AEDs, and the patient died a week after discharge due to disease progression. LESSONS: Anti-GAD65 autoimmune encephalitis can be extralimbic, can present with isolated epilepsy, and extralimbic anti-GAD65 encephalitis can occur with an underlying malignancy.


Assuntos
Doenças Autoimunes do Sistema Nervoso , Encefalite , Epilepsia , Encefalite Límbica , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Masculino , Humanos , Pessoa de Meia-Idade , Glutamato Descarboxilase , Epilepsia/terapia , Encefalite/diagnóstico , Encefalite Límbica/diagnóstico , Autoanticorpos
14.
Int J Mol Sci ; 24(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37685910

RESUMO

Oral squamous cell carcinoma (OSCC) is the most prevalent subtype of head and neck tumors, highly prone to lymph node metastasis. This study aims to examine the expression pattern of Ras-related protein Rab-27A (RAB27A) and explore its potential implications in OSCC. The expression of RAB27A was assessed through immunohistochemical analysis utilizing tissue microarrays. In vitro experiments were conducted using RAB27A-knockdown cells to investigate its impact on OSCC tumor cells. Additionally, transcriptome sequencing was performed to elucidate potential underlying mechanisms. RAB27A was significantly overexpressed in OSCC, and particularly in metastatic lymph nodes. It was positively correlated with the clinical progression and poor survival prognosis. Silencing RAB27A notably decreased the proliferation, migration, and invasion abilities of OSCC cells in vitro. A Gene Ontology (GO) enrichment analysis indicated a strong association between RAB27A and the epidermal growth factor receptor (EGFR) signaling pathway. Further investigations revealed that RAB27A regulated the palmitoylation of EGFR via zinc finger DHHC-type containing 13 (ZDHHC13). These findings provide insights into OSCC progression and highlight RAB27A as a potential therapeutic target for combating this aggressive cancer.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/genética , Neoplasias Bucais/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Receptores ErbB/genética , Proteínas rab27 de Ligação ao GTP
15.
Eur J Med Res ; 28(1): 297, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626424

RESUMO

Fisetin, a natural flavonoid, possesses numerous biological activities that have been extensively studied in various diseases. When it comes to cancer, fisetin exhibits a range of biological effects, such as suppressing cell growth, triggering programmed cell death, reducing the formation of new blood vessels, protecting against oxidative stress, and inhibiting cell migration. Moreover, fisetin has the ability to enhance the effectiveness of chemotherapy. The anticancer properties of fisetin can be attributed to a diverse array of molecules and signaling pathways, including vascular endothelial growth factor (VEGF), mitogen-activated protein kinase (MAPK), nuclear factor-kappa B (NF-κB), PI3K/Akt/mTOR, and Nrf2/HO-1. Consequently, fisetin holds promise as a therapeutic agent for anticancer treatment. In this review, we place emphasis on the biological functions and various molecular targets of fisetin in anticancer therapy.


Assuntos
Neoplasias , Fosfatidilinositol 3-Quinases , Humanos , Fator A de Crescimento do Endotélio Vascular , Flavonóis , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Neoplasias/tratamento farmacológico
16.
Eur J Pharmacol ; 956: 175956, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37541374

RESUMO

MicroRNA (miRNA)-mediated gene silencing is a method of RNA interference in which a miRNA binds to messenger RNA sequences and regulates target gene expression. MiRNA-based therapeutics have shown promise in treating a variety of central nervous system diseases, as verified by results from diverse preclinical model organisms. Over the last decade, several miRNA-based therapeutics have entered clinical trials for various kinds of diseases, such as tumors, infections, and inherited diseases. However, such clinical trials for central nervous system diseases are scarce, and many central nervous system diseases, including hemorrhagic stroke, ischemic stroke, traumatic brain injury, intractable epilepsy, and Alzheimer's disease, lack effective treatment. Considering its effectiveness for central nervous system diseases in preclinical experiments, microRNA-based intervention may serve as a promising treatment for these kinds of diseases. This paper reviews basic principles and recent progress of miRNA-based therapeutics and summarizes general procedures to develop such therapeutics for treating central nervous system diseases. Then, the current obstacles in drug development are discussed. This review also provides a new perspective on possible solutions to these obstacles in the future.


Assuntos
Lesões Encefálicas Traumáticas , Doenças do Sistema Nervoso Central , MicroRNAs , Neoplasias , Humanos , MicroRNAs/genética , MicroRNAs/uso terapêutico , MicroRNAs/metabolismo , Neoplasias/tratamento farmacológico , Interferência de RNA , Resultado do Tratamento , Lesões Encefálicas Traumáticas/tratamento farmacológico , Doenças do Sistema Nervoso Central/terapia , Doenças do Sistema Nervoso Central/tratamento farmacológico
17.
Mol Cancer ; 22(1): 125, 2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37543582

RESUMO

Hairy cell leukemia (HCL) is a B-lymphoma induced by BRAF(V600E) mutation. However, introducing BRAF(V600E) in B-lymphocytes fails to induce hematological malignancy, suggesting that BRAF(V600E) needs concurrent mutations to drive HCL ontogeny. To resolve this issue, here we surveyed human HCL genomic sequencing data. Together with previous reports, we speculated that the tumor suppressor TP53, P27, or PTEN restrict the oncogenicity of BRAF(V600E) in B-lymphocytes, and therefore that their loss-of-function facilitates BRAF(V600E)-driven HCL ontogeny. Using genetically modified mouse models, we demonstrate that indeed BRAF(V600E)KI together with Trp53KO or pTENKO in B-lymphocytes induces chronic lymphoma with pathological features of human HCL. To further understand the cellular programs essential for HCL ontogeny, we profiled the gene expression of leukemic cells isolated from BRAF(V600E)KI and Trp53KO or pTENKO mice, and found that they had similar but different gene expression signatures that resemble that of M2 or M1 macrophages. In addition, we examined the expression signature of transcription factors/regulators required for germinal center reaction and memory B cell versus plasma cell differentiation in these leukemic cells and found that most transcription factors/regulators essential for these programs were severely inhibited, illustrating why hairy cells are arrested at a transitional stage between activated B cells and memory B cells. Together, our study has uncovered concurrent mutations required for HCL ontogeny, revealed the B cell origin of hairy cells and investigated the molecular basis underlying the unique pathological features of the disease, with important implications for HCL research and treatment.


Assuntos
Leucemia de Células Pilosas , Animais , Humanos , Camundongos , Linfócitos B/metabolismo , Leucemia de Células Pilosas/genética , Leucemia de Células Pilosas/metabolismo , Leucemia de Células Pilosas/patologia , Mutação , Proteínas Proto-Oncogênicas B-raf , Fatores de Transcrição/genética
18.
Biosens Bioelectron ; 236: 115415, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37245459

RESUMO

Cancer development is driven by diverse processes, and metabolic alterations are among the primary characteristics. Multiscale imaging of aberrant metabolites in cancer is critical to understand the pathology and identify new targets for treatment. While peroxynitrite (ONOO-) is reported being enriched in some tumors and plays important tumorigenic roles, whether it is upregulated in gliomas remains unexplored. To determine the levels and roles of ONOO- in gliomas, efficient tools especially those with desirable blood-brain barrier (BBB) permeability and can realize the in situ imaging of ONOO- in multiscale glioma-related samples are indispensable. Herein, we proposed a strategy of physicochemical property-guided probe design, which resulted in the development of a fluorogenic probe NOSTracker for smartly tracking ONOO-. The probe showed sufficient BBB permeability. ONOO- triggered oxidation of its arylboronate group was automatically followed by a self-immolative cleavage of a fluorescence-masking group, liberating its fluorescence signal. The probe was not only highly sensitive and selective towards ONOO-, but its fluorescence favored desirable stability in various complex biological milieus. Guaranteed by these properties, multiscale imaging of ONOO- was realized in vitro in patient-derived primary glioma cells, ex vivo in clinical glioma slices, and in vivo in the glioma of live mice. The results showed the upregulation of ONOO- in gliomas. Furthermore, a specific ONOO- scavenger uric acid (UA) was pharmaceutically used to downregulate ONOO- in glioma cell lines, and an anti-proliferative effect was observed. These results taken together imply the potential of ONOO- as a biomarker and target for glioma treatment, and propose NOSTracker as a reliable tool to further explore the role of ONOO- in glioma development.


Assuntos
Técnicas Biossensoriais , Glioma , Camundongos , Animais , Barreira Hematoencefálica/metabolismo , Ácido Peroxinitroso , Corantes Fluorescentes/química , Glioma/diagnóstico por imagem , Glioma/tratamento farmacológico , Biomarcadores , Imagem Óptica
19.
Artigo em Inglês | MEDLINE | ID: mdl-37185088

RESUMO

A strictly anaerobic, organohalide-respiring bacterium, designated strain GPT, was characterized using a polyphasic approach. GPT is Gram-stain-negative, non-spore-forming and non-motile. Cells are irregular cocci ranging between 0.6 and 0.9 µm in diameter. GPT couples growth with the reductive dechlorination of 1,2-dichloroethane, vinyl chloride and all polychlorinated ethenes, except tetrachloroethene, yielding ethene and inorganic chloride as dechlorination end products. H2 and formate serve as electron donors for organohalide respiration in the presence of acetate as carbon source. Major cellular fatty acids include C16 : 0, C18 : 1ω9c, C16 : 1, C14 : 0 and C18 : 0. On the basis of 16S rRNA gene phylogeny, GPT is most closely related to Dehalogenimonas formicexedens NSZ-14T and Dehalogenimonas alkenigignens IP3-3T with 99.8 and 97.4 % sequence identities, respectively. Genome-wide pairwise comparisons based on average nucleotide identity, average amino acid identity and digital DNA-DNA hybridization do not support the inclusion of GPT in previously described species of the genus Dehalogenimonas with validly published names. On the basis of phylogenetic, physiological and phenotypic traits, GPT represents a novel species within the genus Dehalogenimonas, for which the name Dehalogenimonas etheniformans sp. nov. is proposed. The type strain is GPT (= JCM 39172T = CGMCC 1.17861T).


Assuntos
Ácidos Graxos , Vitis , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Composição de Bases , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Bactérias Anaeróbias/genética , Oxirredução , Formiatos , Fosfolipídeos/química
20.
Biomed Opt Express ; 14(5): 2055-2067, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37206116

RESUMO

Exosomes are extracellular vesicles that serve as promising intrinsic nanoscale biomarkers for disease diagnosis and treatment. Nanoparticle analysis technology is widely used in the field of exosome study. However, the common particle analysis methods are usually complex, subjective, and not robust. Here, we develop a three-dimensional (3D) deep regression-based light scattering imaging system for nanoscale particle analysis. Our system solves the problem of object focusing in common methods and acquires light scattering images of label-free nanoparticles as small as 41 nm in diameter. We develop a new method for nanoparticle sizing with 3D deep regression, where the 3D time series Brownian motion data of single nanoparticles are input as a whole, and sizes are output automatically for both entangled and untangled nanoparticles. Exosomes from the normal and cancer liver cell lineage cells are observed and automatically differentiated by our system. The 3D deep regression-based light scattering imaging system is expected to be widely used in the field of nanoparticle analysis and nanomedicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA